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Abstract

The Richtmyer-Meshkov instability is a fundamental fluid instability that occurs when
perturbations on an interface separating gases with different properties grow following the
passage of a shock. This instability is typically studied in shock tube experiments, and con-
stitutes a fundamental example of a complex hydrodynamic flow. Numerical simulations
and models for the instability growth and evolution have also been used to further under-
stand the physics of the Richtmyer-Meshkov instability. In the present work, the formally
high-order accurate weighted essentially non-oscillatory (WENO) shock-capturing method
using a third-order total-variation diminishing (TVD) Runge-Kutta time-evolution scheme
(as implemented in the HOPE code [57]) is applied to simulate the single-mode Richtmyer-
Meshkov instability with reshock in two spatial dimensions. The initial conditions and
computational domain for the simulations are modeled after the Collins and Jacobs [23]
single-mode, Mach 1.21 air(acetone)/SF6 shock tube experiment. The following boundary
conditions are used: (1) periodic in the spanwise direction corresponding to the cross-section
of the test section; (2) outflow at the entrance of the test section in the streamwise direc-
tion, and; (3) reflecting at the end wall of the test section in the streamwise direction. The
present investigation has three principal motivations: (1) to provide additional validation
of the HOPE code against available experimental data; (2) to provide numerical simulation
data for detailed analysis of mixing induced by the Richtmyer-Meshkov instability with
reshock, and; (3) to systematically investigate the dependence of mixing properties on
both the order of WENO reconstruction and spatial resolution. The present study con-
stitutes the first comprehensive application of the high-resolution WENO method to the
Richtmyer-Meshkov instability with reshock, as well as analysis of the resulting mixing.

First, analytical, semi-analytical, and phenomenological models for the growth of a
single- and multi-mode perturbation are reviewed (impulsive, vortex, perturbation, po-
tential flow, and asymptotic power-law growth models), including models for diffuse and
reshocked interfaces. A model for baroclinic circulation deposition is also reviewed. Nu-
merical simulations are performed using the third-, fifth-, and ninth-order WENO method
with spatial resolutions corresponding to a uniform grid with 128, 256, and 512 points per
initial perturbation wavelength. The density from the fifth- and ninth-order simulation
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is compared to the corrected experimental PLIF images of Collins and Jacobs at selected
times. The amplitude obtained from the fifth-order simulation at a resolution of 256 points
per initial perturbation wavelength is compared to the experimental data of Collins and
Jacobs and to the predictions of linear and nonlinear amplitude growth models before and
after reshock. The prediction of the Zhang-Sohn nonlinear amplitude growth model is in
best agreement with the simulation data prior to reshock. The simulation data is also in
excellent agreement with the experimentally-measured amplitude prior to reshock. The
absence of the initial rarefaction wave (resulting from the rupture of the membrane that
generates the first shock in the experiment) in the numerical simulations results in a time
lag between the numerical and experimental interface evolution following reshock. The
results of this component of the present investigation also serve as an additional validation
of the HOPE code as applied to a shock-induced hydrodynamic instability.

Second, local and global properties of the mixing during the linear, nonlinear, pre- and
post-reshock, and late-time phases are investigated and discussed, including a quantitative
investigation of the time-dependence and structure of various related mixing parameters
defined in terms of the mole fraction and one-dimensional energy spectra. Spatial averaging
of quantities along the spanwise (periodic) flow direction yields streamwise profiles, and is
used to define instantaneous Reynolds and Favre averages and fluctuations. The fluctua-
tions are Fourier-transformed along the spanwise direction to define time-dependent energy
spectra as a function of the one-dimensional wavenumber. Global statistics are obtained by
integrating these spectra over all wavenumbers. Several time-dependent volume-averaged
quantities are also considered. The effects of reshock on these quantities are examined
and discussed in detail. A comparison of simulations with reflecting and outflow boundary
conditions at the end wall of the test section exhibits the effects of additional reflected wave
interactions following reshock on the above quantities. The simulations are carried out to
much longer times (t = 18 ms) than reported in the experiment (t = 11 ms) to study the
evolution of profiles, spectra, and statistics in the decay and quasi-decay regimes (corre-
sponding to outflow and reflecting boundary conditions, respectively)—quantities that are
not currently experimentally-measurable.

Third, the dependence of the mixing layer width, mixing properties, spectra, and statis-
tics on the grid resolution and order of WENO spatial flux reconstruction is comprehen-
sively investigated. Simulations with varying orders of reconstruction and grid resolutions
have different characteristics of intrinsic numerical diffusion arising from the truncation and
other numerical errors in the algorithm. Quantities such as mixing fractions and energy
spectra are sensitive to the numerical diffusion prior to reshock: it is shown that these
sensitivities are significantly amplified following reshock when the energy deposited by the
shock on the evolving interface induces the formation of small-scale features and amplifies
the fluctuations of all quantities within the mixing layer. It is shown that simulations
on coarse grids and using low orders of WENO reconstruction preserve large-scale struc-
tures and symmetry even at late times, while simulations on fine grids and using higher
orders of reconstruction exhibit fragmentation of the structures, breaking of symmetry,
and increased mixing. The differences between the simulations can be quantified by the
time-evolution of the fluctuating kinetic energy and enstrophy, as well as the density and
pressure variance. The investigation suggests that similar flow features are qualitatively
and quantitatively captured by either increasing the spatial resolution or the order of re-
construction. The computational scaling shows that increasing the order of reconstruction
from third to fifth or from fifth to ninth approximately doubles the computational cost.
However, for a given order of reconstruction, doubling the spatial resolution from 128 to
256 or from 256 to 512 points per initial perturbation wavelength incurs a five- to eight-fold
increase in computational cost.

Based on the results of the present investigation, it is concluded that the WENO method
using high order reconstruction is well-suited for the simulation and analysis of complex
hydrodynamic flows induced by shock-interface interactions.
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1 Introduction

The Richtmyer-Meshkov instability occurs when perturbations on the interface separating two
different fluids grow following the passage of a shock and eventually develop complex structure.
The instability derives its name from the linear instability analysis and numerical work of
Richtmyer [87], who considered the instability generated by a shock impulsively accelerating
a sinusoidally-perturbed interface. The predictions of Richtmyer were subsequently confirmed
in shock tube experiments by Meshkov [69]. This instability is of great fundamental interest
in fluid dynamics [104, 13], as well as of interest to inertial confinement fusion [63, 77, 64, 8],
and to supernovae dynamics [33, 6, 7, 49, 5]. One of the challenges in understanding the
Richtmyer-Meshkov instability is modeling the growth of the mixing layer in the nonlinear
phase and following reshock, as well as predicting the statistical properties and dynamics of
turbulent mixing induced by the instability.

The classical Richtmyer-Meshkov instability is typically experimentally investigated in
shock tubes. Consider a two-dimensional flow, where x is the streamwise direction (the direc-
tion of shock propagation) and y is the spanwise direction. Two gases with different densities
are initially at rest and separated by a perturbed interface η(y, t = 0). A multi-mode pertur-
bation can be represented as a superposition of sinusoidal modes

η(y, 0) =
N∑
n=1

an sin (kny) , (1)

where {an} are the initial amplitudes, and

kn =
2π
λn

(2)

=
2πn
λ

are the wavenumbers with wavelengths {λn}. Only a single sinusoidal mode

η(y, 0) = a0 sin (k y) (3)

is considered in the present investigation (with k = 2π/λ), and the gases are taken to be a
mixture of air and acetone [denoted air(acetone) in the sequel] and sulfur hexafluoride (SF6). A
planar shock with Mach number Ma is generated in air(acetone) by the rupture of a membrane
(or diaphragm), propagates down the shock tube, enters the test section, and interacts with the
perturbed interface. In the present work, the evolution of the Richtmyer-Meshkov instability is
considered in two spatial dimensions using the HOPE code (see Part 1 of this report [57] for the
governing equations and a detailed description of the code and numerical method). A particular
validation of the HOPE code using shock refraction theory was also presented in Part 1 [57] of
this report. Two-dimensional simulations, analysis and modeling of the Richtmyer-Meshkov
instability resulting from the interaction of a planar shock with a perturbed inclined interface,
including a study of the effects of shock-interface angle, Mach number, perturbation amplitude,
perturbation wavelength, and gas composition are presented in Part 3 of this report [58].
Two- and three-dimensional simulations, analysis, and modeling of the Richtmyer-Meshkov
instability are presented in Part 4 of this report [59]. Molecular dissipation and diffusion
effects are neglected in the present simulations. Hence, these simulations can be regarded as
monotone-integrated (or implicit) large-eddy simulations [12, 30, 31].
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As the shock passes through the interface, the misalignment of the pressure and density
gradients causes a deposition of vorticity through the baroclinic production mechanism illus-
trated in Fig. 1. Defining the vorticity ω = ∇ × u, where u is the velocity, the vorticity
evolution equation (shown here for three dimensions and in the absence of dissipation terms)

dω
dt

= (ω · ∇)u− ω∇ · u +
∇ρ×∇p

ρ2
(4)

describes the dynamics of vorticity generation, where d/dt = ∂/∂t + u · ∇ is the convective
derivative, ρ is the density, and p is the pressure. The first term on the right side is the vortex-
stretching term, which is zero in the present two-dimensional investigation, as the vorticity and
velocity field are orthogonal. Vortex stretching is a fundamental mechanism in the dynamics of
turbulence and distinguishes ‘two-dimensional turbulence’ [53] from actual three-dimensional
turbulence. In particular, vortex stretching is associated with the cascade of energy from large
scales to smaller scales through an inertial subrange at sufficiently large Reynolds numbers.
In two-dimensional flows, the energy transfer is predominantly from small scales to larger
scales, resulting in the generation of larger and more coherent structures than observed in
three-dimensional flows [22]. Vortex stretching enhances dissipation, resulting in more diffuse
and smaller scale structures in three dimensions. Thus, the properties of turbulent mixing
are expected to be significantly different in two and three dimensions. These differences will
be examined in detail in Part 4 [59] of this report. The second term on the right side is
the compression term, and does not contribute significantly to the vorticity evolution. The
third term on the right side is the baroclinic production term, and constitutes the principal
mechanism of vorticity generation by the Richtmyer-Meshkov instability. This term is large
when the shock passes through the interface and when waves interact with the interface.
Following the passage of the shock, the perturbed interface is set in motion along the direction
of shock propagation, a reflected shock returns back into the air(acetone) gas, and a transmitted
shock enters the SF6 gas.

The vorticity baroclinically deposited on the interface by the shock drives the evolution of
the instability, with spikes of the heavier fluid (SF6) penetrating the lighter fluid [air(acetone)]
and bubbles of the lighter fluid “rising” in the heavier fluid. When the fluids are miscible,
molecular mixing occurs between these interpenetrating spikes and bubbles, generating a mix-
ing layer and a topologically-complex flow. In the present investigation, explicit molecular
mixing is not modeled; instead, numerical diffusion across the interface models the ‘molecular
mixing’ process. At late times, the vorticity coalesces into strong cores causing the character-
istic mushroom roll-ups to form, as illustrated in Fig. 1. Additional deposition of vorticity and
enhanced mixing occurs when the interface interacts with another shock wave, as in the con-
figuration considered here. The transmitted shock from the initial shock-interface interaction
reflects from the end wall of the shock tube test section and interacts with the evolving layer,
as illustrated in Fig. 2. This second interaction (referred to as reshock in the sequel) deposits
vorticity of opposite sign so that bubbles transform into spikes and vice versa in a process called
inversion. The inversion process induces the formation of additional complex structures, with
additional disorganized small-scale flow features observed at late times, as shown in Fig. 3.
Following reshock, the interface changes its direction of motion and now moves away from
the end wall of the test section: a transmitted shock enters the air(acetone) and a reflected
rarefaction returns into the SF6. Unlike in the case of the first shock-interface interaction, the
reflected wave is now a rarefaction wave, as the shock refracts from the heavier SF6 gas into the
lighter air(acetone) gas. The rarefaction wave is reflected from the end wall of the test section
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and interacts with the evolving interface, resulting in the formation of additional complex,
small-scale structures. Throughout the evolution of the instability, both prior to and following
reshock, shear due to the secondary Kelvin-Helmholtz instability [28, 29, 67] develops at the
interface. This secondary instability further enhances the development of a complex topology
with increasing surface area, eventually resulting in a mixing layer that becomes turbulent
at sufficiently large Reynolds numbers. The single-mode Richtmyer-Meshkov instability with
reshock is considered in the present work, as it offers the possibility to observe two phases of
the instability development and their coupling: the nonlinear phase prior to reshock, and the
post-reshock phase. As summarized below in § 1.1 and 1.2, this flow configuration has not
been extensively studied either experimentally or numerically.

1.1 Previous single-mode Richtmyer-Meshkov instability experiments with
reshock

Many experiments have been performed to investigate the properties of the Richtmyer-Meshkov
instability (see Brouillette [13] for a recent review). However, most of the experiments con-
ducted to date only consider the evolution of the instability in the linear and nonlinear regimes.
Relatively few experiments have been performed to study the dynamics of the flow following
reshock. Briefly summarized below are single-mode, compressible experiments with reshock in
a planar geometry, which are relevant to the present investigation (multi-mode experiments
are summarized in Part 4 [59] of this report). The present discussion is limited to classical
fluid (shock tube) experiments and does not consider high-energy density (laser) experiments.

Houas and Chemouni [43] performed shock tube experiments using CO2/He, CO2/Ar,
and CO2/Kr over a range of shock Mach numbers Ma = 2–4.7 to determine the power-law
governing the width of the mixing layer before and after reshock. The measurements were
compared against the linear [71] and t2/3 [10] growth power-laws, and it was concluded that
the data was in good agreement with the t2/3 law both before and after reshock. Sadot et
al. [90] performed a shock tube experiment using air/SF6 with λ = 2.6 cm, a0 = 0.2 cm, and
Ma = 1.3. Collins and Jacobs [23] performed shock tube experiments using air(acetone)/SF6

with λ = 5.93 cm, a0 = 0.229 cm and 0.183 cm for Ma = 1.11 and 1.21, respectively. The
experimental amplitude growth prior to reshock was compared to the predictions of models.
These experiments are described in more detail in § 3.1. The quantitative data obtained from
these experiments was mainly limited to perturbation amplitude growth.

1.2 Previous numerical simulations of single-mode Richtmyer-Meshkov in-
stability with reshock

The vast majority of numerical simulations of single- and multi-mode Richtmyer-Meshkov
instabilities to date have considered the flow evolution initiated by only a single shock-interface
interaction. As in the case of experiments, very few simulations have considered the effects
of reshock on an evolving interface. Briefly summarized below are single-mode, compressible
simulations with reshock in a planar geometry, which are relevant to the present investigation
(multi-mode simulations are summarized in Part 4 [59] of this report). The present discussion
is limited to classical fluid (shock tube) simulations and does not consider simulations in
converging geometry.

Mikaelian [73] performed two-dimensional arbitrary Lagrangian-Eulerian simulations of gas
configurations consisting of three layers, 1/2/1, with fluid 1 representing semi-infinite layers of

17



density at t = 2 ms vorticity at t = 2 ms

density at t = 5 ms vorticity at t = 5 ms

Figure 1: The Richtmyer-Meshkov instability occurs when perturbations on an interface sepa-
rating two fluids with different properties grow following the passage of a shock. The vorticity
deposited baroclinically through the misalignment of the density and pressure gradients drives
the evolution of the instability. As the instability develops, spikes of heavier fluid penetrate
into the lighter fluid and bubbles of the lighter fluid penetrate into the heavier fluid. The
vorticity coalesces into vortices with strong cores forming the characteristic “mushrooms” at
late times. The images are taken from the simulation described in § 3.
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density at t = 6.5 ms vorticity at t = 6.5 ms pressure at t = 6.5 ms

Figure 2: The single-mode Richtmyer-Meshkov instability during reshock. The reflected shock
compresses the interface and deposits vorticity of opposite sign on the interface. Note the
reflected rarefaction wave and the transmitted shock wave in the pressure. The images are
taken from the simulation described in § 3.

density at t = 6.9 ms density at t = 8.9 ms

Figure 3: Following reshock of the evolving interface, bubbles transform into spikes and vice
versa during the inversion process, causing additional structures to form. At late times, the
roll-ups develop more disorganized, small-scale structures. The images are taken from the
simulation described in § 3.
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air and fluid 2 representing a finite-thickness layer of freon, SF6, or He having perturbations
either on the upstream or downstream side. These perturbations were in phase (sinuous)
or out of phase (varicose). The shock Mach number was 1.5. The primary purpose of the
simulations was to investigate freeze-out, interface coupling, and feedthrough. Sadot et al.
[90] compared the amplitude growth from their single-mode reshock experiment to numerical
simulation data and found very good agreement prior to the arrival of the rarefaction wave
from the end wall. As in the case of experiments, the quantitative data obtained from these
simulations was mainly limited to the consideration of perturbation amplitude growth.

1.3 Objectives of the current investigation

A central objective of the present work is to establish a systematic procedure to investigate
the dynamics of the mixing process induced by the Richtmyer-Meshkov instability, and more
generally by complex hydrodynamic flows. The methods used are adapted from classical in-
vestigations of turbulence and turbulent mixing, and synthesize high-resolution numerical sim-
ulation data, theoretical models for instability growth, and available experimental data. This
procedure results in:

1. the application of a modern, high-resolution, flexible numerical method that has been
validated against available experimental data;

2. a numerical database that provides quantities that can be compared to model predictions
and to experimental measurements, as well as quantities that have not been modeled (or
are difficult to model) or are not available experimentally;

3. numerical data for configurations extended to times beyond what is possible to achieve
experimentally, or for configurations that are difficult to achieve experimentally;

4. a systematic understanding of the important effects of spatial resolution and formal order
of the method on quantities of interest to modeling the instability evolution and mixing.

This study is part of a larger, longer-term program aimed at:

1. developing improved theoretical models for instability growth in the nonlinear regime, as
well as for the evolution following reshock;

2. investigating closure models for ensemble-averaged descriptions of turbulent transport
and mixing, as well as for the development of subgrid-scale models for large-eddy simu-
lations;

3. improving the numerical methods used to simulate complex hydrodynamic flows induced
by shocks;

4. aiding the design of new experimental configurations and new experimental diagnostics.

This report is organized according to three principal components. First, a comprehensive
review of the main linear and nonlinear models for single- and multi-mode perturbation am-
plitude growth is presented in § 2, including impulsive, vortex, perturbation, potential flow,
and asymptotic power-law growth models. Models for diffuse and reshocked interfaces are
also reviewed. Two-dimensional numerical simulations of the single-mode Richtmyer-Meshkov
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instability with reshock using the fifth-order WENO method (using the HOPE code) and a uni-
form grid resolution based on 256 points per initial perturbation wavelength are performed.
The initial conditions and computational domain for the simulations are adapted from the
Mach 1.21 air(acetone)/SF6- shock tube experiment of Collins and Jacobs [23]. The interface
evolution (density) is compared to the experimental PLIF images of Collins and Jacobs before
and after reshock in § 3. In addition, the mixing layer width from the simulation before and
after reshock is compared to the experimental data and to the predictions of the analytical,
semi-analytical, and phenomenological models summarized in § 2.

Second, a comprehensive quantitative analysis of the local and global properties of mixing
is presented in § 4. The analysis characterizes the mixing process along the direction of shock
propagation using mole fractions and a fast kinetic reaction model. The modal distribution
of energy in the mixing layer is quantified using a Fourier (spectral) analysis of the fluctuat-
ing kinetic energy (and its streamwise and spanwise components) and enstrophy, as well as
the pressure and the density variance. The evolution of mixing is characterized using mixing
fractions before and after reshock up to time t = 18 ms. Finally, statistics (wavenumber-
integrated energy spectra) are considered to understand the time-evolution of energy present
in the fluctuations. Furthermore, to investigate the decay of fluctuations in the mixing layer
in the absence of additional waves interacting with the evolving interface following reshock,
the boundary condition at the end of the computational domain (corresponding to the end
wall of the test section) is varied from reflecting to outflow to allow the reflected rarefaction
wave to exit the domain. At late time, this case is referred to as the decay regime, as distin-
guished from the quasi-decay regime occurring when reflected waves interact with the evolving
interface following reshock. Comparisons of mole fractions, spatially-integrated mixing profiles
and fractions, and statistics between the reflecting and outflow boundary condition cases are
presented and discussed.

Third, a comprehensive investigation of the dependence of the mixing layer width and of
mixing quantities on the order of reconstruction and grid resolution is presented in § 5. The
results from two-dimensional numerical simulations using the third-, fifth-, and ninth-order
WENO reconstruction and three different uniform grid resolutions corresponding to 512, 256,
and 128 points per initial perturbation wavelength are compared. Simulations with different
grid resolutions and orders of reconstruction have different numerical diffusion properties in-
troduced by the algorithm. In particular, high-order, high-resolution simulations have lower
numerical diffusion than low-order, low-resolution simulations. The differences in the time-
evolution and structure of the mole fractions, spectra, mixing fractions, and statistics are
investigated before and after reshock. A temporal progression of the density and vorticity
fields is presented at intervals of 1 ms for the three orders of reconstruction and three grid
resolutions in § 5.7.
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2 Models for the perturbation amplitude and mixing layer
growth and for circulation deposition

The prediction and modeling of the mixing layer growth in the nonlinear and turbulent regimes
resulting from the Richtmyer-Meshkov instability is of great interest. An overview of the
principal models categorized according to the underlying physical assumptions on the flow
is presented in this section. Note that it is implicitly assumed in all of these models that
molecular dissipation and diffusion effects, as well as surface tension and other effects, are
negligible. These models all have important limitations and a limited domain of applicability,
but represent an effort to better understand the fundamental aspects of Richtmyer-Meshkov
instability growth into the nonlinear regime.

Figure 4 shows an illustration of the bubble and spike amplitudes ab and as, respectively,
and the mixing layer width h. The blue contour shows a typical early-time evolution of the
interface induced by the Richtmyer-Meshkov instability. The spikes penetrate into the lighter
fluid and roll up, while bubbles “rise” into the heavier fluid. The solid red line shows the
location of the shocked, unperturbed interface used as a reference for the measurements of the
bubble and spike amplitudes. The distance from the unperturbed interface to the tip of the
bubble represents the bubble amplitude ab, while the distance from the unperturbed interface
to the tip of the spike represents the spike amplitude as. The mixing layer width is defined as
the sum of the bubble and spike amplitudes

h(t) = ab(t) + as(t) . (5)

The mixing layer amplitude predicted by the models presented in this section is the average of
the bubble and spike amplitude

a(t) =
ab(t) + as(t)

2
(6)

=
h(t)
2

,

i.e., one-half the mixing layer width.
Impulsive models based on representing the shock as a δ-function acceleration are reviewed

in § 2.1. Models based on representing the vorticity deposited by the shock as point vortices
are reviewed in § 2.2. Models based on asymptotic expansions of the perturbed compressible
fluid equations are reviewed in § 2.3. Models based on potential theory are reviewed in § 2.4.
Scaling laws for multi-mode initial conditions are reviewed in § 2.5. Finally models for the
deposition of circulation by a shock are reviewed in § 2.6.

2.1 Impulsive models

Impulsive models based on representing the shock as an instantaneous δ-function acceleration
are briefly reviewed and summarized here. Impulsive models for the Richtmyer-Meshkov insta-
bility were developed by adapting existing models for the Rayleigh-Taylor instability. These
models predict a linear growth in time for the mixing layer that captures the early stages of
the instability evolution before nonlinear effects become important.
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Figure 4: The solid blue line represents a typical interface evolving according to the Richtmyer-
Meshkov instability with spikes penetrating the lighter fluid and rolling up, and bubbles rising
in the lighter fluid. The solid red line is the location of the shocked unperturbed interface and
is used as the reference to measure the bubble and spike amplitudes ab and as. The mixing
layer width is h = as+ab and the amplitude of the perturbation is a = (as + ab)/2. The image
is from a simulation of the Richtmyer-Meshkov instability using a vortex method [56].

2.1.1 The Richtmyer model

The first impulsive model proposed to predict the growth of the single-mode perturbation
amplitude is due to Richtmyer [87]. Richtmyer modified earlier work by Taylor [96] for the
growth of a small perturbation with amplitude a(t) and wavenumber k when a dense fluid is
accelerated continuously into a lighter fluid, and the fluids are initially separated by a single-
mode interfacial perturbation (the single-mode Rayleigh-Taylor instability). Replacing the
constant gravitational acceleration g in the Taylor result

d2a

dt2
= g Ak a (7)

where A = (ρ2 − ρ1)/(ρ2 + ρ1) is the Atwood number and ρ1 and ρ2 are the densities of
the lighter and heavier fluid, respectively] by the impulsive acceleration that the interface
undergoes after the passage of the shock

g = [u] δ(t) , (8)

where [u] is the jump in the interface velocity due to shock passage, and integrating Eq. (7)
gives

da
dt

= k [u]A− a0, (9)

where a−0 ≡ a(0) is the initial (pre-shock) perturbation amplitude and A− is the pre-shock
Atwood number. As the right side of this equation is constant, the Richtmyer impulsive model
predicts linear growth according to

a(t) =
(
1 + k [u]A− t

)
a−0 . (10)
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Richtmyer found good agreement between the prediction of this model and the amplitude
growth obtained by the direct numerical solution of the full set of perturbation equations [87]
in the case when the shock propagates from a lighter fluid into a heavier fluid (A− > 0).
Even better agreement was obtained when the pre-shock Atwood number, A−, was replaced
by the post-shock Atwood number, A+, and the pre-shock amplitude, a−0 , was replaced by the
post-shock amplitude, a+

0 :
da
dt

= v0 , (11)

where the Richtmyer velocity is

v0 ≡ k [u]A+ a+
0 , (12)

so that

a(t) = a+
0 + v0 t (13)

=
(
1 + k [u]A+ t

)
a+

0 . (14)

2.1.2 The Meyer-Blewett model

Meyer and Blewett [70] found that their experimental amplitude growth data for shocks prop-
agating from heavy to light gases was better modeled if the post-shock initial amplitude a+

0

was replaced by the pre-shock initial amplitude, a−0 . For this reason, Meyer and Blewett em-
pirically replaced the initial post-shock amplitude in the Richtmyer formulation Eq. (11) by
the average of the pre- and post-shock amplitudes

da
dt

= k [u]A+ a+
0 + a−0

2
, (15)

so that

a(t) =
(
1 + k [u]A+ t

) a+
0 + a−0

2
. (16)

2.1.3 The Fraley perturbation solution

Fraley [34] presented an analytic solution to the linearized perturbation equations in the case
of a reflected shock wave. The linearized perturbation equations were considered first by
Richtmyer [87], who solved them numerically. Fraley reconsidered the perturbation equations
for a single-mode initial perturbation and solved the equations by taking the Laplace transform
in time. For weak shocks the solution is given by (see [13])

da
dt

= k [u] a−0

[
A− + ε

F (c, A−)
γ1

]
, (17)

F (c, A) =

{
(c− 1)2

2
− 1 +A

1−A
− c+

1
c

[
(1 +A)2

1−A
+ (1−A) c2

]}
1−A

c+ 1
,

c =

√
(1 +A−) γ2

(1−A−) γ1
.
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with the Richtmyer model recovered with ε→ 0. Thus,

a(t) =
{

1 + k [u]
[
A− + ε

F (c, A−)
γ1

]
t

}
a−0 . (18)

This solution was first recognized by Mikaelian [72] as the most accurate solution for the
initial growth of the perturbation. In particular, Mikaelian showed that when A+ is chosen to
be zero, the Richtmyer formula (11) predicts a zero growth rate—the so-called “freeze-out”.
However, numerical experiments do not show a freeze-out for A+ = 0. Instead, freeze-out is
observed when the values are chosen so that da/dt = 0.

2.1.4 The Vandenboomgaerde et al. model

Vandenboomgaerde, Mügler and Gauthier [99] developed an amplitude growth model based on
modifying the impulsive acceleration assumption of Richtmyer [87]. Returning to the Rayleigh-
Taylor instability result for incompressible flows, Eq. (7), the constant terms for the accelera-
tion g, Atwood number A, and amplitude a were replaced by linearly time-varying values from
the pre- to post-shock quantities. The linear variation occurs as the shock crosses the interface
between times t−0 = −a−0 /(2ushock) and t+0 = a−0 /(2ushock). Therefore,

g(t) =
ushock [u]

a−0
Y− (1− Y+) , (19)

A(t) = (1− Y−)A− + Y− (1− Y+)
[
ushock (A+ −A−) t

a−0
+
A+ +A−

2

]
+ Y+A

+ , (20)

a(t) = (1− Y−) a−0 + Y− (1− Y+)

[
ushock

(
a+

0 − a−0
)
t

a−0
+
a+

0 + a−0
2

]
+ Y+ a

+
0 , (21)

where Y± = Y (t− t±0 ), and Y (t) is the regularized Heaviside function

Y (t) ≡


0 t < −δ
t+δ
2 δ + sin

(
πt
δ

)
−δ ≤ t ≤ δ

1 t > δ

. (22)

Substituting Eqs. (19)–(21) into Eq. (7) and integrating gives

da
dt

=
1
2
k [u]

(
A+ a+

0 +A− a−0
)
− 1

6
k [u]

(
A+ −A−

)(
a+

0 − a−0
)
, (23)

so that

a(t) = a−0 + k [u]

{
A+ a+

0 +A− a−0
2

−
(A+ −A−)

(
a+

0 − a−0
)

6

}
t . (24)

Note that the second term on the right side is generally very small, and is therefore typically
neglected. The Meyer-Blewett formula (15) takes into account the variation in amplitude for a
shocked interface, whereas the above formulation also considers the change in Atwood number.

To determine the range of validity of Eq. (23), the predicted amplitude is compared to
the exact solution of the linearized perturbation equations provided by Fraley [34] using a
normalized growth rate analysis. In this analysis [72], the normalized growth rate obtained via
Eq. (17) and Eq. (23) are plotted as a function of the shock strength. The region over which
the two formulae agree constitutes the region of validity for the Vandenboomgaerde model.
Such an analysis can also be applied to other amplitude growth models.
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2.1.5 The Brouillette-Sturtevant model for diffuse interfaces

Brouillette and Sturtevant [15] modified the Richtmyer model to account for the presence of a
diffuse, perturbed interface separating two gases. Their model is based on the classical analysis
of Duff, Harlow and Hirt [32] concerning the evolution of the Rayleigh-Taylor instability in
fluids separated by a thick, diffuse interface.

The Duff, Harlow, and Hirt analysis begins with the linear eigenvalue equation for the
perturbation velocity u corresponding to a sinusoidally-perturbed, arbitrary density profile
subject to a gravitational acceleration (see [20])

d
dx

(
ρ du

dx

)
= u k2

(
ρ− g

$2
dρ
dx

)
d2a
dt2

= $2 a
, (25)

where the eigenvalue $2 = gAk is appropriate for a discontinuous interface. For a diffuse
interface, Duff, Harlow, and Hirt heuristically proposed the eigenvalue

$2 =
g Ak

ψ
, (26)

where ψ is the growth reduction factor and is, in general, a function of the interface width and
Atwood number. Substituting this expression into Eq. (25), ψ becomes the new eigenvalue to
be determined. Specifically, the equation for the amplitude evolution becomes

d2a

dt2
=
g Ak

ψ
a . (27)

Substituting the gravitational acceleration by an impulsive acceleration of Eq. (8) allows the
resulting equation to be integrated directly to account for the width of the interface in the
Richtmyer model:

da
dt

=
k [u]A+

ψ
a+

0 . (28)

The value of ψ is obtained by solving the eigenvalue problem with the diffuse density profile

ρ(x) = ρ

[
1 +A erf

(
x

δ

)]
, (29)

where ρ = (ρ1 + ρ2)/2, A = (A− +A+)/2, and δ = (δ− + δ+)/2. Note that δ is the character-
istic width of the interface, and is taken as the maximum slope of the density profile at a time
τ after molecular diffusion begins. The growth reduction factor is larger for smaller Atwood
number, and ψ = 1 + πδ/λ in the limit A → 0. In the limit of a thin interface with δ/λ = 0,
it follows that ψ = 1. Also, ψ = 1 in the limit A→ 1.

When the width of the interface is larger than the wavelength of the perturbation, δ/λ > 1,

ψ = 1 + C
δ

λ
, (30)

where C is a constant. This yields

da
dt

=
2π
δ

A+ [u] a+
0

C
, (31)
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so that

a(t) =
(

1 +
2π
δ

A+ [u] a+
0

C
t

)
a+

0 . (32)

This model is easily integrated into other models by the substitution

k −→ k

ψ
. (33)

Note that Collins and Jacobs [23] also included the growth reduction factor ψ in their com-
parison of model predictions to their experimental data. The value ψ = 1.08 is used in the
comparisons of model predictions to numerical simulation data later in this report, and is taken
from Collins and Jacobs [23].

2.2 The Jacobs-Sheeley vortex model

Jacobs and Sheeley [47] developed a vortex model for the amplitude growth measured in their
incompressible Richtmyer-Meshkov instability experiments. This model was presented together
with other models to reconcile their experimental results with the model predictions available
at the time. Jacobs and Sheeley considered the ‘impulsive Richtmyer-Meshkov instability’
observed when a tank containing two liquids is impulsively accelerated by rapidly decelerating
it after a short drop. The use of liquids allows sharper initial interfaces without the presence of a
membrane, as liquids do not diffuse very rapidly. Furthermore, the experimental configuration
with the free-fall component removes any effect from gravity.

Jacobs and Sheeley argued that the appearance of mushrooms in the Richtmyer-Meshkov
instability is a manifestation of the coalescence of the initial sheet of vorticity into vortices
with well-defined cores located at midpoints along the interface. The strength of the initial
vortex sheet γ can be computed based on linear analysis as

γ(x) = −2 v0 sin (kx) , (34)

where v0 is the initial growth rate of the interface and k is the perturbation wavenumber. As
the vortex sheet coalesces into single point vortices, it is possible to determine the circulation
Γ as

Γ =
∫ π/k

0
γ(x) dx (35)

= −4
k
v0 .

Additional mechanisms for the production of vorticity can be neglected, as they are typically
much smaller compared to the baroclinic production mechanism arising from the passage of
the shock.

Assume that a periodic array of point vortices with alternating signs is initially located
along the interface at points midway between the peaks and troughs of the initial perturbation.
The velocity field generated by this set of vortices is determined by the streamfunction

ψ(x, y) =
Γ
4π

ln
[
cosh (ky) + sin (kx)
cosh (ky)− sin (kx)

]
. (36)

As the instability evolves in time, the flow will distort the interface and wrap it around the
vortex cores. The growth of the mixing layer is determined by the velocity of the point located
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between two successive vortices. The component of the velocity normal to the array of vortices
is

v(x, y) = −∂ψ
∂x

(37)

= −k Γ
2π

cosh (ky) cos (kx)
cosh2 (ky)− sin2 (kx)

.

At the midpoints x = ±nπ/k, the normal velocity is given by

v(y) = ± 1
2π

k Γ
cosh (ky)

. (38)

At the midpoints, the vertical position y(t) is also equivalent to the amplitude of the mixing
layer a(t). Therefore, the initial value problem for the amplitude

da
dt

= v(t) , a(0) = a+
0 (39)

is obtained, which can be solved via a substitution from Eq. (35): the result is

a(t) =
1
k

sinh−1

[
2
π
k v+

0 t+ sinh
(
ka+

0

)]
. (40)

It was found that this model underestimates the observed data, but gives a late-time
logarithmic scaling of the amplitude, corresponding to a 1/t scaling of the velocity. To address
the discrepancy between the model prediction and the data, it was suggested that this model
becomes valid when the initial sheet of vorticity has had sufficient time to coalesce into a
single vortex. At this point, the interface has already developed for some time and, therefore,
a larger value for ka+

0 must be used. With this correction, the model overestimates the data,
but somewhat better agreement is obtained at late times.

2.3 Perturbation models

Models based on the asymptotic expansion of the perturbation equations are reviewed here.
These models generate asymptotic series with limited radii of convergence: the convergence
can be improved using Padé approximants.

2.3.1 The Zhang-Sohn model

Zhang and Sohn [107] developed a model to investigate the growth rate of a Richtmyer-Meshkov
unstable interface, valid for compressible fluids from early to late times in the case of a re-
flected shock (light-to-heavy transition). The dynamics of the initially-perturbed interface are
modeled using the linear, compressible Euler equations for early times and using the nonlinear,
incompressible equations for later times.

Let y = η(x, t) denote the initial perturbation, and let φ1(x, y, t) and φ2(x, y, t) denote the
velocity potentials for the flows in the inviscid, irrotational fluids 1 and 2. Then, the differential
equations

∇2φi = 0 in fluid i (41)

govern the potential flow: the conditions at the interface are given by

∂η

∂t

∣∣∣∣
y=η

− ∂φ1

∂x

∂η

∂x

∣∣∣∣
y=η

+
∂φ1

∂y

∣∣∣∣
y=η

= 0 (42)

29



∂η

∂t

∣∣∣∣
y=η

− ∂φ2

∂x

∂η

∂x

∣∣∣∣
y=η

+
∂φ2

∂y

∣∣∣∣
y=η

= 0 (43)

ρ1
∂φ1

∂t

∣∣∣∣
y=η

− ρ2
∂φ2

∂t

∣∣∣∣
y=η

+
ρ2

2

[(
∂φ2

∂x

)2

+
(
∂φ2

∂y

)2
] ∣∣∣∣

y=η

− ρ1

2

[(
∂φ1

∂x

)2

+
(
∂φ1

∂y

)2
] ∣∣∣∣

y=η

(44)
= 0.

The initial conditions are

η(x, 0) = a+
0 cos (kx) ,

dη

dt

∣∣∣∣
t=0

= a+
0 σ cos (kx) , (45)

where
σ = A+ [u] k (46)

is a constant given by the linear initial growth predicted by the Richtmyer model [see Eq.
(11)].

A perturbation solution is assumed, and each term is further expanded into a series as

η(x, t) =
∞∑
n=1

η(n)(x, t) (47)

φi(x, y, t) =
∞∑
n=0

φ
(n)
i (x, y, t) (48)

η(n)(x, t) =
n∑
j=1

a
(n)
j (t) cos (jkx) (49)

φ
(n)
1 (x, y, t) =

n∑
j=0

b
(n)
1j (t) cos (jkx) e−jky (50)

φ
(n)
2 (x, y, t) =

n∑
j=0

b
(n)
2j (t) cos (jkx) ejky. (51)

Collecting terms of the same order leads to a system of ordinary differential equations in time
that can be easily integrated. The first three terms of the solution are given by

η(1)(x, t) =
(
a+

0 + a+
0 σ t

)
cos (kx)

η(2)(x, t) = 1
2 k
(
a+

0

)2
σ2A+ t2 cos (2kx)

η(3)(x, t) = − 1
24 k

2
(
a+

0

)3
σ
{[

4 (A+)2 + 1
]
σ2 t3 + 3σ t2 + 6 t

}
cos (kx)

+1
8 k

2
(
a+

0

)3
σ
{[

4 (A+)2 − 1
]
σ2 t3 − 3σ t2

}
cos (3kx)

. (52)

As seen from the expression for η(3), additional higher-order terms in the perturbation series
becomes quite complicated.

The series approximation can be evaluated at the locations of the spike and bubble to yield
the mixing layer width. The bubble and spike are located at x = 0 and x = π/k, respectively;
thus, the width defined as half the distance between spike and bubble is

a(t) =
1
2

[
η(0, t)− η

(π
k
, t
)]
. (53)
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The above formulation yields an independent series for the spike and the bubble. These two
separate series can be used to evaluate models for the amplitude of the bubble or spike. The
growth of the mixing layer is given by

da
dt

= v0

{
1− k2 v0 t a

+
0 +

[(
A+
)2 − 1

2

]
k2 v2

0 t
2

}
, (54)

where k is the wavenumber of the initial perturbation, and v0 is the Richtmyer velocity (12).
Unfortunately, the range of validity of this finite Taylor series approximation is limited. For
this reason, Padé approximations (see below) are used to extend the approximation into the
nonlinear regime:

da
dt

=
v0

1 + k2 v0 a
+
0 t+ max

[
0,
(
k a+

0

)2 − (A+)2 + 1
2

]
k2 v2

0 t
2
. (55)

Thus, the amplitude is given by

a(t) =
2

k

√
4 max

[
0,
(
k a+

0

)2 − (A+)2 + 1
2

]
−
(
k a+

0

)2
× tan−1


k a+

0 + 2 max
[
0,
(
k a+

0

)2 − (A+)2 + 1
2

]
k v0 t√

4 max
[
0,
(
k a+

0

)2 − (A+)2 + 1
2

]
−
(
k a+

0

)2
 . (56)

The choice of the Padé approximant P 0
2 for

(
ka+

0

)2 ≥ (A+)2 − 1/2 and P 0
1 for

(
ka+

0

)2 ≤
(A+)2−1/2 matches the asymptotic growth observed experimentally for large t. The amplitude
growth predicted by the model was in excellent agreement with numerical simulation results
and with experimental data conducted in air/SF6.

To clarify the role of Padé approximations, a brief explanation following Bender and Orszag
[11] is presented. Padé approximations arise in the context of summation of perturbation series.
It is often the case that only a few terms are available when a perturbation series is formed for
a small parameter ε. These terms often converge very slowly to the desired solution, or they
may diverge due to the presence of a singularity. Padé approximations offer the possibility
of improving the behavior of diverging perturbation series based on the knowledge of only
a few terms. Padé approximations are also used to improve the convergence properties of
diverging power series. In many instances, the regular power series may diverge as it reaches
the boundaries of the region of convergence: Padé approximants can further extend the range
of validity.

In a Padé approximation, the power series
∑

n anz
n is replaced by a sequence of rational

functions PNM called the Padé approximants. The indicesM andN denote the order of the poly-
nomial in the denominator and in the numerator, respectively. Thus, the Padé approximant
can be expressed as

PNM (z) =
∑N

n=0An z
n∑M

n=0Bn z
n

(57)

with coefficients {An}Nn=0 and {Bn}Mn=0. Note that, without loss of generality, B0 = 1. The
other M+N+1 terms are chosen so that the first M+N+1 terms in the Taylor series for PNM

31



match the M + N + 1 terms in the series
∑

n anz
n. As M and N increase, PNM (z) converges

even if the series
∑

n anz
n diverges or even in regions where the series summation is no longer

convergent.
It is straightforward to determine the values of the coefficients of a Padé series given the

series
∑

n anz
n. The coefficients Bi satisfy the matrix equation

C


B1

B2
...

BM

 = −


aN+1

aN+2
...

aN+M

 , (58)

Cij = aN+i−j . (59)

The elements of the matrix C are constant along diagonals. Also note that if the index
N + i− j < 0, then its value can be taken to be zero. Once the Bi are determined, the Ai are
computed as

Ai =
i∑

j=0

ai−j Bj , (60)

and Bj = 0 for j > M .

2.3.2 The Vandenboomgaerde et al. model

Vandenboomgaerde, Gauthier, and Mügler [98] proposed a simplified version of the perturba-
tion expansion of Zhang and Sohn [107]. First, choose

σ =
k [u]

2

(
A+ +

A−

1− [u]
ushock

)
(61)

so that a0σ gives the right side of Eq. (23). Noting that an accurate perturbation series can
be obtained by retaining only the secular terms (i.e., the terms with the largest unbounded
part), only the largest power from each term of the Zhang and Sohn solution Eq. (52) must
be retained. This yields

η(1)(x, t) =
(
a+

0 + a+
0 σ t

)
cos (kx)

η(2)(x, t) = 1
2

(
a+

0

)2
k σ2A+ t2 cos (2kx)

η(3)(x, t) = −1
8 k

2
(
a+

0

)2
σ3 t3

{
1
3

[
4 (A+)2 + 1

]
cos (kx)−

[
4 (A+)2 − 1

]
cos (3kx)

} . (62)

Such an approximation is usually valid for large times, but in this case the first two terms
of the series are identical to the series of Zhang and Sohn, so that good agreement is expected
between the predictions of this model and the Zhang-Sohn model, even at small times. Another
advantage of this method is that high-order terms can be easily computed. As only the
high-order terms in the series are retained, the determination of the coefficients shifts from
integrating in time to solving an algebraic system. Using this method gives the series solution
up to eleventh-order for the growth of the mixing layer:

a(t) = a+
0 +

1
k

5∑
n=0

P2n+1

(
a+

0 kσt
)2n+1

, (63)
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where

P1(x) = 1
P3(x) = −1

6

(
1− 2x2

)
P5(x) = 1

240

(
19− 125x2 + 92x4

)
P7(x) = − 1

5040

(
264− 3686x2 + 6997x5 − 3234x6

)
P9(x) = 1

2903040

(
117663− 2855274x2 + 10086083x4 − 11093856x6 + 3805728x8

)
P11(x) = − 1

159667200(5507319− 206796915x2 + 1168865775x4 − 2250383605x6

+1755444326x8 − 483163144x10)

(64)

This series solution diverges at t ≈ (a+
0 kσ)−1; therefore, Padé approximants are used to extend

the validity of the solution. Note that the Padé approximation is constructed for the amplitude
growth rate da/dt and not for the amplitude itself a(t), which yields better results and is also
in the spirit of the work of Zhang and Sohn [107]. The growth rate is given by the tenth-degree
polynomial

da
dt

= a+
0 σ

5∑
n=0

(2n+ 1)P2n+1

(
a+

0 kσt
)2n

. (65)

A P 4
6 Padé approximant is constructed as

P 4
6 (t) =

∑4
n=0An

(
a+

0 kσt
)n∑6

n=0B
n
n

(
a+

0 kσt
) (66)

with the Padé coefficients {An} and {Bn} computed as described above (the values are not
presented as the analytical expressions are complex and can be easily computed).

2.4 Potential flow models

Potential flow models can describe the amplitude evolution of the Rayleigh-Taylor and Richtmyer-
Meshkov instabilities through the nonlinear regime. A potential flow model provides a descrip-
tion of the flow through late times by the velocity evolution of bubbles and spikes. Layzer
[60] developed the first potential flow model to describe the Rayleigh-Taylor instability. This
model was subsequently extended to the Richtmyer-Meshkov instability.

2.4.1 The Layzer model for the Rayleigh-Taylor instability

Layzer [60] presented analytic solutions for the flow observed when an ideal, incompressible
fluid contained in the upper half of a vertical tube falls under the action of gravity. In the
experiments, the lower half of the tube was empty and the surface was initially flat. Distur-
bances were applied so that a single “vacuum” bubble rises at the center of the tube. Layzer
obtained solutions for the velocity of the bubble tip in the case of a two-dimensional channel
and a three-dimensional circular tube. Note that the density ratio of the two fluids in the
system above is effectively infinite, corresponding to an Atwood number A = 1.

For inviscid fluids initially at rest, the velocity field can be described by a scalar potential
φ(x, y, t) and φ(x, y, z, t) in two and three dimensions, respectively, satisfying the Laplace and
Bernoulli equations. The Laplace equation is

∇2φ = 0 , (67)
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where ∇2 = ∂2/∂x2 + ∂2/∂y2 in two dimensions and ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 in three
dimensions. The Bernoulli equations are

∂φ

∂t

∣∣∣∣
y=η

− 1
2

[(
∂φ

∂x

)2

+
(
∂φ

∂y

)2
] ∣∣∣∣

y=η

− g η

∣∣∣∣
y=η

= constant , (68)

∂φ

∂t

∣∣∣∣
z=η

− 1
2

[(
∂φ

∂r

)2

+
(
∂φ

∂z

)2
] ∣∣∣∣

z=η

− g η

∣∣∣∣
z=η

= constant (69)

in two and three dimensions, respectively, where the three-dimensional equation is written in
polar coordinates. The interface further satisfies the kinematic condition

∂φ

∂z

∣∣∣∣
y=η

=
∂η

∂t

∣∣∣∣
y=η

+
∂φ

∂x

∂η

∂x

∣∣∣∣
y=η

, (70)

∂φ

∂z

∣∣∣∣
z=η

=
∂η

∂t

∣∣∣∣
z=η

+
∂φ

∂r

∂η

∂r

∣∣∣∣
z=η

, (71)

in two and three dimensions, respectively. The ansatz for the perturbation is given by

φ(x, y, t) = F (t) e−y cosx , (72)
φ(r, z, t) = F (t) e−z J0(r) (73)

in two and three dimensions, respectively, where J0(r) is the Bessel function of order zero.
Let g = 1 and define

T (t) = 1 +
∫ t

t0

F (t) dt, (74)

so that F (t) ≡ dT (t)/dt and η satisfy

eη = T

[
1− r2

8

(
1− 1

T 2

)]
. (75)

Substituting these expressions into the Bernoulli equations gives a differential equation

T
(
T 2 + 1

) d2T

dt2
−
(

dT
dt

)2

− T 2
(
T 2 − 1

)
= 0 , (76)

T
(
2T 3 + 1

) d2T

dt2
−
(
T 3 − 1

)(dT
dt

)2

− T 2
(
T 3 − 1

)
= 0 (77)

in two and three dimensions, respectively.
Let aRTb (t) denote the amplitude of the Rayleigh-Taylor bubble, related to T (t) by

aRTb (t) = log T (t) . (78)

Let vRTb denote the velocity of the bubble. Then, for aRTb (0) = 0, it follows that Eqs. (76) and
(77) can be integrated to give

vRTb (t) =
daRTb

dt
(79)

=

√
exp

(
3 aRTb

)
− 3 η − 1

3
[
exp

(
3 aRTb

)
+ 1

2

] ,
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vRTb (t) =
daRTb

dt
(80)

=

√
exp

(
2 aRTb

)
− 2 η − 1

exp
(
2 aRTb

)
+ 1

in two and three dimensions, respectively. These equations can be integrated to obtain the
position of the bubble tip. For late times, the velocities are given by

vRTb =

√
g R

β1
, (81)

vRTb =
√

g

3 k
(82)

in two and three dimensions, respectively, where β1 ≈ 3.832 is the first zero of the Bessel
function of order one.

2.4.2 The Hecht-Alon-Shvarts model for the Richtmyer-Meshkov instability

Hecht, Alon, and Shvarts [38] extended the Layzer model to the Richtmyer-Meshkov instability.
The two-dimensional equations for the potential φ are modified so that g = 0 and an initial
velocity perturbation vRMb (0) equal to the change in velocity after the shock is introduced.
The velocity at late times is

vRMb (t) =
2

3 k t
, (83)

and is independent of the initial velocity perturbation. The asymptotic bubble curvature is

κ =
3λ
2π

, (84)

which is also the same as for Rayleigh-Taylor bubbles. The predictions of this model were in
good agreement with numerical simulations for A = 1.

2.4.3 The Mikaelian model for arbitrary initial perturbations

Mikaelian [74] extended the Layzer model to the case when ab(0) 6= 0 for both the Rayleigh-
Taylor and the Richtmyer-Meshkov instability. Equations for the bubble velocity in the
Rayleigh-Taylor and Richtmyer-Meshkov instabilities were derived in two- and three-dimensional
geometries. The late-time limit of vRTb in two and three dimensions was shown to be consistent
with the values determined by Layzer in Eqs. (82) and (81), respectively. For the Richtmyer-
Meshkov instability, the late-time two- and three-dimensional bubble velocities are

vRMb (t) =
2

3 k t
, (85)

vRMb (t) =
R

β1 t
, (86)

respectively, in agreement with the earlier result of Hecht [38] in Eq. (83).
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2.4.4 The Zhang model for the velocity of spikes

Zhang [106] extended the Layzer model to determine the velocity of spikes for both the
Richtmyer-Meshkov and the Rayleigh-Taylor instabilities in two and three dimensions. Ex-
pressions for the spike and bubble velocity were determined by assuming that the interface is
locally parabolic,

η(y, t) = a(t) + ξ(t) k y2 . (87)

Substitution into the governing equations gives a system of ordinary differential equations for
a(t) and ξ(t) in terms of F (t) from Eq. (72):

da
dt

= F k e−ka , (88)

dξ
dt

= −F k2

(
3 ξ +

1
2

)
e−ka , (89)

k e−ka
(
ξ +

1
2

)
dF
dt

= −F 2 k3 ξ e−2ka − g ξ . (90)

It is possible to eliminate F (t) from the first two equations to obtain

ξ(a(t)) =
{[
ξ(0) +

1
6

]
e−3k[a−a(0)] − 1

6

}
(91)

and a differential equation for v(t) = da(t)/dt = v(ξ(t)):

−k
2

4
(6 ξ + 1)

dv2

dξ
+

k2

2 ξ + 1
v2 +

2 ξ
2 ξ + 1

g = 0 . (92)

The differential equation (92) can be solved for v = v(ξ(t)). It is then possible to obtain an
expression v = v(a(t)) via the substitution ξ = ξ(a(t)) in Eq. (91) to obtain the velocity for
the bubble and spike

v =

√
9 [2 ξ(0) + 1] k v(0)2 − 6 [6 ξ(0) + 1][a− a(0)] k g + 2

(
e3k[z−z(0)] − 1

)
g

3 k
[
6 ξ(0) + 1 + 2 e3k[a−a(0)]

] . (93)

In the case of a sinusoidal initial perturbation, ξ(0) = −a(0)k/2 for the bubble and ξ(0) =
a(0)k/2 for the spike. The late-time asymptotic solutions are

vRTb −→
√

g

3 k
ξRTb −→ −1

6
(94)

vRTs (t) −→ −g t ξRTs −→ ∞ (95)

vRMb (t) −→ 2
3 k t

ξRMb −→ −1
6

(96)

vRMs −→ v0

√
6 ξ0 + 3
6 ξ0 + 1

ξRMs −→ ∞ , (97)

where b and s denote the bubble and spike, respectively. The novel components of this model
are the spike equations (95) and (97). The equations for the bubble in two dimensions, (94)
and (96), were previously derived by Layzer [60] in Eq. (82) and by Hecht [38] in Eq. (85). The
model predicts constant linear acceleration for a spike in the Rayleigh-Taylor instability and
constant velocity in the Richtmyer-Meshkov instability (depending on the initial conditions
v0 and ξ0). The solutions are consistent with the results of numerical computations based on
conformal mapping [68] and on finite-differencing [2].
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2.4.5 The Goncharov model for arbitrary Atwood numbers

Goncharov [35] extended the two-dimensional Layzer model to the case of A 6= 1 for both the
Rayleigh-Taylor and the Richtmyer-Meshkov instability. The Bernoulli equation is modified
to include the density and is given at y = η by{

ρ1
∂φ1

∂t
+
ρ1

2

[(
∂φ1

∂x

)2

+
(
∂φ1

∂y

)2
]

+ ρ1 g y

}

−

{
ρ2
∂φ2

∂t
+
ρ2

2

[(
∂φ2

∂x

)2

+
(
∂φ2

∂y

)2
]

+ ρ2 g y

}
= f(t) , (98)

where f(t) is an arbitrary function, and η(t) is given by Eq. (87). The velocity potentials for
the two fluids φ1 and φ2 assume the form

φ1(x, y, t) = a1(t) cos (kx) e−k(y−η0) , (99)

φ2(x, y, t) = b1(t) cos (kx) ek(y−η0) + b2(t) y , (100)

where a1, b1 and b2 are unknown functions. The form of the potential is dictated by the
boundary conditions. The equations are again expanded around (87) and solved. Note that ξ
is related to the curvature by κ = −1/(2ξ). The final results for the bubble velocities when
A 6= 1 are

vRTb −→

√
2Ag

3 (1 +A) k
, ξRTb −→ −k

6
, (101)

vRMb (t) −→ 3 +A

3 (1 +A) k t
, ξRMb −→ −k

6
.

2.4.6 The Sohn model

Sohn [94] also extended the Layzer model to fluids with arbitrary density ratio. The approach
differs from the Goncharov model in the use of a simpler form for the potential functions from
Layzer [60] in Eq. (72). The shape of the interface near a bubble tip is assumed to be parabolic
[see Eq. (87)]. Substituting this form and expanding yields the system of equations of Zhang,
Eqs. (88)–(90), with Eq. (90) now modified to include the Atwood number:

k e−ka
(
ξ +

1
2

)
dF
dt

= −AF 2 k3 ξ e−2ka −Ag ξ . (102)

The asymptotic bubble velocities are determined by solving the evolution equations to obtain

vRTb −→

√
Ag

(2 +A) k
, ξRTb −→ −k

6
, (103)

vRMb (t) −→ 2
(2 +A) k t

, ξRMb −→ −k
6
. (104)

Thus, this model predicts that the velocity of a bubble in a Richtmyer-Meshkov flow decays
to zero at asymptotic times. The predictions of this model were validated against numerical
simulations in two dimensions.
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2.4.7 The Sadot et al. empirical model for the Richtmyer-Meshkov instability

The Sadot et al. [80] empirical model for the Richtmyer-Meshkov instability is based on fits to
experimental data and on asymptotic growth laws. The model was presented in the context
of providing a single formula that could capture the initial linear growth, as well as the later
nonlinear growth for both the bubbles and the spikes. Let ab(t) and as(t) denote the amplitudes
of the bubbles and spikes, and let v0 = kA+[u]a0 be the Richtmyer velocity, but using the post-
shock Atwood number. The Sadot model for the velocities of the bubble, spike, and mixing
layer is

dab
dt

=
v0 (1 + k v0 t)

1 + (1 +A+) k v0 t+ 1
2πC k

2 v2
0 t

2
, (105)

das
dt

=
v0 (1 + k v0 t)

1 + (1−A+) k v0 t+ 1−A+

1+A+
1

2πC k
2 v2

0 t
2
, (106)

da
dt

=
1
2

(
dab
dt

+
das
dt

)
. (107)

The value of C is determined using experimental data, and it is found that for A+ ≥ 0.5,
C = 1/(3π). In the limit A+ → 0, C = 1/(2π). For intermediate values of the Atwood
number, the value of C is poorly-determined. The bubble and spike amplitudes corresponding
to these growth rates are

ab(t) = ab(0) +
2− 2πC (1 +A+)

k
√

2
πC − (1 +A+)2

tan−1

 1 +A+ + k v0 t
πC√

2
πC − (1 +A+)2

 (108)

+
π C

k
ln

[
1 +

(
1 +A+

)
k v0 t+

(k v0 t)
2

2πC

]
,

as(t) = as(0) +
2− 2πC (1 +A+)

k
√

2
πC

1−A+

1+A+ − (1−A+)2
tan−1

 1−A+ + 1−A+

1+A+
k v0 t
πC√

2
πC

1−A+

1+A+ − (1−A+)2

 (109)

+
π C

k

1 +A+

1−A+
ln

[
1 +

(
1−A+

)
k v0 t+

1−A+

1 +A+

(k v0 t)
2

2πC

]
.

This model has been extensively tested against new and previous experimental data, and
excellent agreement was found for both the spike and bubble growth. Furthermore, the model
appears to be valid over the range Ma = 1.3–3.5. As the model is mainly based on incompress-
ible flow considerations, the authors conclude that compressibility effects are not significant in
modeling the growth of the mixing layer.

2.5 Power-law models for multi-mode initial perturbations and following
reshock

Scaling laws for the mixing layer width arising from a multi-mode initial interfacial perturbation
and following reshock of an evolving interface are presented here. In both cases, the shock-
interface interaction generates a complex and possibly turbulent mixing layer at late times.
The determination of the late-time or asymptotic scaling laws for the growth of the mixing
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layer in the Richtmyer-Meshkov instability remains an open question, and is not considered in
the present work.

Multi-mode initial perturbations are particularly relevant, as such perturbations are typ-
ically found in nature. The effects of reshock, occurring as the interface undergoes multiple
impulsive accelerations by waves, are also of great interest. Reshock occurs in a shock tube
experiment when the transmitted shock following the initial interaction with the interface re-
flects from the end wall of the test section and interacts with the evolving interface. Following
reshock, a transmitted shock continues in the first fluid and a reflected rarefaction wave returns
into the second fluid. The reflected rarefaction wave reflects from the end wall and interacts
again with the evolving interface, generating a reflected compression wave. The reflected
compression wave reflects from the end wall and again interacts with the evolving interface.
Eventually, the interface comes to rest following a sufficient number of such interactions. Each
interaction with a reflected wave deposits additional baroclinic vorticity on the complex evolv-
ing interface, and imparts additional energy into the mixing layer. The amount of energy
deposited depends on the characteristic of the small scales: for this reason, different growth
characteristics are expected in the reshocked, single-mode Richtmyer-Meshkov instability than
in the multi-mode Richtmyer-Meshkov instability without reshock.

2.5.1 The Alon et al. bubble merger model for A = 1

Alon et al. [1] developed a statistical bubble merger model for the late-time evolution of a
two-dimensional Richtmyer-Meshkov bubble front in the limit A = 1 corresponding to fluids
with very large density ratios; the choice of the Atwood number allows the use of potential
theory to model the flow. The use of bubbles is justified by the observation that the late-time
evolution of a Richtmyer-Meshkov unstable interface can be modeled by the rise and merger
of large bubbles.

The bubbles are characterized by their diameter or wavelength λi and are initially arranged
along a line with some distribution for λ given by g(λ). The bubbles begin rising at velocities

vb(λi) =
λi
3πt

(110)

and two adjacent bubbles merge at the rate ω(λi, λi+1), giving rise to a new bubble of diameter
λi + λi+1 with velocity vb(λi + λi+1). The amplitude of the interface ab(t) is obtained using
the average of bubble velocities,

dab
dt

= 〈vb〉 . (111)

As observed earlier [3], the dynamics eventually reach a scale-invariant regime in which the
distribution of the bubble sizes scales with the average bubble size. In this regime, the mean
velocity 〈vb〉, the average wavelength 〈λ〉, and the parameter θb satisfy the relations

〈vb〉 =
〈λ〉
3πt

, (112)

d〈λ〉
dt

=
θb 〈λ〉
t

, (113)

θb =
∫ ∞

0

∫ ∞

0
$0

(
x

y

)
f(x) f(y) dxdy , (114)
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where $0(x/y) is the dimensionless merger rate and f(x) is the scaled distribution function
that is independent of the initial distribution of bubbles. These yield the power-law scaling

ab(t) ∼ a(λ0, θb)
(
t

t0

)θb

, a(λ0, θb) =
λ0

3π θb
(115)

for the height of the bubble front in Richtmyer-Meshkov unstable flows, where t0 is an arbitrary
time in the scale-invariant regime, λ0 is the average wavelength at that time, and θb = 0.4.
This scaling can also be related to the initial conditions (see [2]) by

ab(t) =
cB λ0

θb ηθb

[
vb(0) t
λ0

]θb

, (116)

where λ0 and vb(0) are the average initial wavelength and velocity of the bubble, η = O(1)
is a parameter depending on the initial spectrum, and cB is the scaling constant in the scale-
invariant regime with 〈vb〉 = cB〈λ〉/t. Comparison with numerical simulations showed good
agreement with the model prediction.

The model was later extended to arbitrary density ratios [2] by assuming that the merger
rate $ of Eq. (114) is insensitive to Atwood number variations. Therefore, the scaling law
with θb = 0.4 does not change for smaller Atwood numbers. A scaling law was also derived for
the amplitude of the spikes

as(t) ∼ λ0

(
u0 t

λ0

)θs(A)

, (117)

where
θs(A) = 1− β(A) (1− θb) (118)

depends on the Atwood number. The sum h = ab + as gives the total mixing layer width
corresponding to a multi-mode Richtmyer-Meshkov instability at all Atwood numbers.

2.5.2 The Rikanati et al. vortex model for bubble merger when A→ 0

Rikanati, Alon and Shvarts [89] reconsidered the modeling of the bubble merger process in the
limit of A→ 0. Noting that the potential flow model (which is the basis of the Alon et al. [1]
model) is no longer appropriate at small Atwood numbers, an alternative model based on the
Jacobs and Sheeley [47] vortex model was proposed, as vortices form shortly after the passage
of the shock.

Consider an initial array of identical vortices forming a vortex line, for which the complex-
valued potential is

w(z) =
iΓ
2π

∞∑
n=−∞

ln (z − n z0) (119)

=
iΓ
2π

ln
[
sin
(
πz

z0

)]
,

where z0 is the constant separation between the vortices and Γ is the vortex circulation. The
single-mode Richtmyer-Meshkov instability can be modeled by two periodic arrays with vortices
of opposite strength adjacent to one other. When the initial perturbation is sinusoidal, it is
possible to obtain an expression for Γ = a0/k, which yields

h(t) =
1
k

sinh−1

(
Γ k2

2πt

)
(120)
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for the amplitude of the mixing layer. Thus, the asymptotic velocity scales as

vb(t) =
1
2π

λ

t
, (121)

compared to the asymptotic velocity in the case A = 0 [38] based on the potential model,

vb(t) =
1
3π

λ

t
. (122)

The difference between the two values is due to the added mass in the case A = 0.
Now consider the case of a periodic array of bubbles with two different strengths. The

merger rate was then approximated as

ω

(
λ1

λ2

)
=

1
∆tm

, (123)

where tm is the merger time—the time required for the tip of a small bubble to go from positive
to negative. This result for ω and the resulting asymptotic velocity for the single bubble in
Eq. (121) are used in the bubble merger model, which yields the scaling law for the bubble
amplitude in Eq. (116) with θb = 0.4. Note that the value of θb is the same for A = 0 and
A = 1, further confirming the observation of [2].

2.5.3 The Prasad et al. late-time model

Prasad et al. [84] performed experiments to study the late-time evolution of the single-mode
Richtmyer-Meshkov instability and developed an empirical power-law model based on their
data. At late times, the mixing layer width was assumed to scale according a power-law

h(t) = c tθ. (124)

Experiments were conducted for a Ma = 1.55 shock refracting at a perturbed air/SF6

interface with different initial amplitudes and wavelengths. The width of the interface was
measured up to 32 initial perturbation wavelengths from the initial location to determine the
power-law that best fits the data. The scatter from different measurements with different
initial amplitudes and wavenumbers is reduced if the data is normalized by the wavenumber
k. A composite least-squares fit to the data yielded

k h = 0.96 (k x)0.33 (125)
= 0.96 (k [u] t)0.33

with x = [u] t. In a separate study, the empirical scaling

h = 2.43 (λx)0.26 (126)
= 2.43 (λ [u] t)0.26

was shown to minimize the scatter of the data and to give the best fit.
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2.5.4 The Youngs model for multi-mode initial conditions

Youngs [103] proposed a model for the late-time scaling of the mixing layer width emerging from
the multi-mode Richtmyer-Meshkov instability. Youngs considered random initial amplitudes
a0 chosen from a Gaussian distribution. The standard deviation in the region k < kmax is flat,
where

kmax =
π

∆y
(127)

is the Nyquist wavenumber. Therefore, the relation

σ2 = C

∫ kmax

0
dk (128)

between the standard deviation σ and the integral of the wavenumbers k was obtained in two
dimensions. For a single-mode Richtmyer-Meshkov instability, σ2 = a2

0/2. The random initial
kinetic energy is

K0 =
1
3

(ρ1 + ρ2) kmax (σ A [u])2 . (129)

Most of the initial kinetic energy arises from modes with wavenumbers near kmax corresponding
to an initial wavelength λmin. A turbulent layer is assumed to develop when the mixing layer
width becomes of order λmin. This layer was shown to have width evolving as tθ with θ < 1.
The following model was developed to explain this.

Assuming that the velocity field is characterized by a lengthscale L and magnitude V , the
kinetic energy dissipation rate scales as ε ∼ V 3/L. The model equations are

d
dt
(
LV 2

)
= −aV 3 , (130)

dW
dt

= V , (131)

L = bW + c λmin , (132)

where a, b, and c are model parameters, and W is an integral lengthscale [4]. This lengthscale
is defined in terms of the averaged volume fractions 〈f1〉 and 〈f2〉 according to

W (t) =
∫ ab(t)

as(t)
〈f1〉〈f2〉dx , (133)

where the angle brackets denote a spatial average over the periodic direction y (see § 4.1). This
lengthscale provides a measure of the diffusive width of the mixing layer, and is less sensitive
to statistical fluctuations than h. The volume fractions of the two fluids fr are defined in terms
of their mass fractions mr(x, y, t) by [103]

fr(x, y, t) =
mr(x,y,t)

ρr

m1(x,y,t)
ρ1

+ m2(x,y,t)
ρ2

, (134)

such that f1 +f2 = 1. Note that W provides an alternative measure of the mixing layer width.
The initial value of V is given by

V0 =
(

dW
dt

)
t=0

= c
√〈

u2
0

〉
, (135)
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c =
1√
2

∫ ∞

0
[1− erf(s)] ds = 0.564 , (136)√〈

u2
0

〉
=
kmax σ U√

2
|A| . (137)

Therefore, for initial conditions W (0) = 0 and V (0) = V0, the power-law solution

W (t) =
c

b
λmin

[(
1 +

V0 t b

θ a λmin

)θ
− 1

]
(138)

is obtained, where

θ =
2

3 + a b
. (139)

For the case when no kinetic energy dissipation occurs (corresponding to a = 0), the θ = 2/3
result of Barenblatt [10] is recovered. When kinetic energy dissipation is present, the equations
predict θ < 2/3.

Youngs compared the predictions of the model (138) with the growth rates obtained from
multi-mode simulations in two and three dimensions. Initially, the growth rate of W/λmin

was the same in two and three dimensions. At intermediate times, W/λmin was larger for the
three-dimensional simulations, indicating that mixing is more rapid in three dimensions. At
later times, the larger dissipation of kinetic energy in three dimensions causes the value of
W/λmin to become smaller than that observed in two-dimensional simulations. For late times,
the three-dimensional data was fitted to the model equation with θ = 0.30.

2.5.5 The Mikaelian model for a reshocked interface

A linear power-law model for the mixing layer width following reshock was developed by
Mikaelian [71] based on the experimental results of Read [86] and Youngs [101] for the the
width of the mixing layer of a Rayleigh-Taylor mixing layer

h(t) = 0.14Ag t2 , (140)

where A is the Atwood number and g is the acceleration. Differentiating this expression
twice, taking g = [u]1δ(t) (where [u]1 is the change in velocity resulting from the reshock), and
integrating twice gives (assuming no dependence on initial conditions and neglecting molecular
dissipation effects) [71]

h(t) = 0.28 [u]1A
+
1 t (141)

where A+
1 is the post-reshock Atwood number.

2.5.6 The Brouillette-Sturtevant model for reshocked interfaces

Brouillette and Sturtevant [14] performed shock tube experiments to measure the effect of a
thick, diffuse interface on the growth of the Richtmyer-Meshkov instability. In these exper-
iments, a thin metal plate initially separated air and SF6 or air and Freon-22 gas. Prior to
launching the shock wave in air, the plate was slowly withdrawn to generate a quasi-sinusoidal
perturbation, leaving a diffuse, thick interface separating the two gases. The shock launched in
air at Mach numbers 1.12–1.66 refracted at the interface and was transmitted into the second
gas. The transmitted shock reflected from the end wall of the shock tube test section and
reshocked the interface.
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The growth of the width of a single-mode interface following N +1 impulsive accelerations
was empirically modeled by generalizing the Richtmyer model:(

dh
dt

)
N

= 2 k
N∑
i=0

[u]iA
+
i a

+
i

ψ+
i

, (142)

where k is the initial perturbation wavenumber, [u]i is the change in the velocity of the interface
corresponding to the ith wave, A+

i and a+
i are the post-shock Atwood number and interface

width, ψ+
i is the post-shock growth reduction factor of Duff et al. [32] (see § 2.1.5), and the

factor of 2 accounts for the mixing layer width (which is twice the mixing layer amplitude
a). As the growth is based on the Richtmyer model for each impulsive acceleration, the
Brouillette-Sturtevant model predicts piecewise-linear in time amplitude growth phases. This
model derived for shocks can also be used for reflected rarefaction waves and, thus, constitutes
an appropriate model for the description of the reshock phase, as it accounts for the multiple
waves that successively interact with the interface. The reflected shock refracts at the evolving
interface during reshock to produce an expansion wave. This expansion wave reflects from the
end wall of the shock tube and interacts with the interface, producing a reflected compression
wave. The compression wave reflects from the end wall and interacts again with the interface,
and this process continues. Brouillette and Sturtevant reported good agreement between their
experimental data and the prediction of Eq. (142).

2.6 The Samtaney-Zabusky-Ray model for baroclinic circulation deposition

Samtaney and Zabusky [92] and Samtaney, Ray and Zabusky [91, 85] derived analytical scal-
ing laws for the circulation Γ per unit unshocked length deposited on a planar interface by a
shock. The interaction can be classified as fast/slow or slow/fast based on the relative speed
of the incident and transmitted shocks. Fast/slow interactions occur when the refraction is
from a lighter fluid into a heavier fluid and is associated with a reflected shock wave. Slow/fast
interactions occur when the refraction is from a heavier fluid to a lighter fluid and is usually
associated with a reflected rarefaction wave. In the present investigation, a slow/fast inter-
action is observed for the initial shock refraction from air(acetone) into SF6 and a fast/slow
interaction is observed at reshock.

The circulation deposition model is derived from shock polar analysis (see [57]). In shock
refraction, five regions can be identified when the flow is considered in a frame moving with the
triple-point, as shown in Fig. 5. The parameters of the model are the density ratio r ≡ ρ1/ρ2,
the shock/interface angle α, the shock Mach number Ma, and the adiabatic exponents of the
two gases γr. For scaling purposes, the adiabatic exponents are taken to be equal.

In the case of a fast/slow interaction in the limit of a strong shock Ma→∞, the circulation
deposition Γ is given by

Γ
Ma

−→
√
γ

sinα


√

1− 2 p∞ sin2 α

(γ + 1) r
−

√√√√1− 2 (1 + µ2 p∞) sin2 α

(γ + 1)
(

1
µ2 + 1+µ2

p∞

)
 cosα

cos (α− δb∞)
, (143)

where µ ≡ (γ − 1)/(γ + 1), p∞ ≡ p5/Ma
2, and δb∞ represents the asymptotic flow turning

angle in region 2 as Ma→∞.
For weak shocks with Ma→ 1,

Γ =
2
√
γ

γ + 1

√
r − 1√
r

sinα
(

1 +
1
Ma

+
2

Ma2

)
(Ma− 1) . (144)
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For small density discontinuities across the interface, the circulation is expressed as a series in
r′ = 1− 1/

√
r.

The circulation scaling law proposed is

Γ =
2
√
γ

γ + 1

(
1− 1

√
γ

)
sinα

(
1 +

1
Ma

+
2

Ma2

)
(Ma− 1) . (145)

In the case of a slow/fast interaction and for strong shocks (Ma→∞),

Γ −→ K(r, α, γ)√
1− ξ(Ma)

, (146)

where

K(r, α, γ) =
√
γ + 1 cotα√

2 cos (α− δb)
(147)

×

√1− 1
r

4 γ p(γ−1)/γ sin2 α

(1 + µ2)(γ−1)/γ (γ + 1)2
−

√√√√1− 4 γ p(γ−1)/γ sin2 α

(1 + µ2)(γ−1)/γ
[
(γ + 1)2 − 4 γ sin2 α

]
 ,

and

ξ(Ma) =
2γ
γ+1

(
Ma2 − 1

)
1 + 2γ

γ+1 (Ma2 − 1)
(148)

is the normalized pressure jump.
In the limit of weak shocks with Ma→ 1,

Γ =
2
√
γ

(
1− 1√

r

)
ξ(Ma) sinα . (149)
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Figure 5: The wave structure of a shock interacting with a contact surface in a reference frame
moving with the point of contact. Note the reflected and the transmitted shocks.



3 Numerical simulations of the single-mode Richtmyer-Meshkov
instability with reshock

In this section, the HOPE code based on the formally high-order accurate weighted essentially
non-oscillatory (WENO) shock-capturing method is used to simulate the two-dimensional,
single-mode Richtmyer-Meshkov instability with reshock (see Part 1 of this report [57] for a de-
tailed discussion of the WENO method and a description of the HOPE code). A third-order TVD
Runge-Kutta time-evolution scheme was used with a CFL number of 0.75. The WENO method
is a modern, high-resolution reconstruction-evolution method for shock-capturing [55, 62]. As
such, the numerical algorithm based on the discretization of the equations contains implicit
truncation errors that can be interpreted as a nonlinear numerical dissipation. Hence, the
present simulations can be interpreted as a class of monotone integrated large-eddy simulations
(MILES) [12, 30, 31], in which the discrete equations are implicitly filtered and the implicit nu-
merical dissipation is a surrogate for a dissipation provided by an explicit subgrid-scale model.
As the non-dissipative compressible fluid dynamics equations are formally ill-posed [21], this
numerical dissipation regularizes the method and renders it numerically stable for increasingly
fine grids. Formally higher-order reconstructions are less dissipative than lower-order recon-
structions. MILES methods typically dissipate velocity and scalar fluctuations approximately
in the same manner numerically. Thus, the numerical Schmidt number is of O(1), which may
provide a reasonable approximate model for the mixing of gases. However, this approxima-
tion is clearly not valid for the case for fluids with large (molecular) Schmidt numbers. All
of the numerical results presented in this section were obtained using the fifth-order WENO
method with a grid resolution ∆x = ∆y corresponding to 256 points per initial perturbation
wavelength. It should be noted that the present work should not be regarded as a complete
endorsement of the WENO method; rather, this work should be regarded as a preliminary
investigation of the properties of this method as applied to the Richtmyer-Meshkov instability
with reshock. Ultimately, the WENO method should be further modified to reduce the numer-
ical dissipation and improve its resolving power: the hybridization of the WENO method with
a central difference scheme, based on multi-resolution analysis, represents one such approach
(see [57]).

It should be noted that the WENO method has been previously applied to the Richtmyer-
Meshkov instability. Kremeyer et al. [54] used a fifth-order WENO method with a third-
order TVD Runge-Kutta time-evolution scheme to perform two-dimensional simulations of
the Richtmyer-Meshkov instability evolution in a shock tube containing gases with different
initial transverse density profiles to investigate shock splitting and, in particular, the role of
shock bowing and vorticity dynamics. Top-hat shaped perturbations, including those shaped
as a notch, were considered instead of a single-mode sinusoidal perturbation considered in
classical investigations of this instability. Zhang et al. [108] used the fifth- and seventh-order
WENO method to simulate the interactions between planar Mach 1.095 and 1.2 shocks with
an SF6 gas cylinder in two dimensions in order to qualitatively and quantitatively study the
dynamical mechanisms of baroclinic vorticity and circulation generation. The results from the
WENO simulations were also compared to the results obtained using the FLASH code. The
interface between the vertical cylinder and surrounding air was modeled by a transition layer
of finite thickness. In addition to flow visualizations at different evolution times, cylinder
lengths, integrated positive and negative vorticity components, normalized circulation, the
distributions of the velocity and density gradient, and cylinder aspect ratio as a function of
time were extracted from the numerical simulation data.
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A description of the initial conditions for the simulations and of the numerical study is
presented in § 3.1. Density plots from the simulations are compared to experimental PLIF
images in § 3.2. The mixing layer width is compared to experimental data and to the predic-
tions of models before and after reshock in § 3.3 and § 3.4, respectively. The time-evolution
of the circulation is considered in § 3.5. Comparisons of quantities obtained from simulations
using different orders of reconstruction and grid resolutions are presented later in § 5.

3.1 Numerical simulation parameters

The initial conditions for the present numerical simulations were taken from the experimental
shock tube configuration of Collins and Jacobs [23]. The Mach 1.21 experiment was selected
for additional validation of the HOPE code by comparing the numerical results to the high-
resolution density PLIF images showing the evolution of the instability and to the measured
mixing layer amplitude prior to reshock. The experiments were conducted in a shock tube
using a novel technique to generate a membrane-less perturbed interface. The entire shock
tube had a length of 4.3 m with a square test section having cross-section 8.9 cm × 8.9 cm
and length 75 cm. The shock was generated through the rupture of a membrane and was
launched into a mixture of 75% air and 25% acetone by volume [referred to as air(acetone)] at
standard room temperature and pressure. The shock then refracted at a perturbed interface
separating the air(acetone) mixture and the denser sulfur hexafluoride (SF6) gas, giving rise
to the Richtmyer-Meshkov instability.

The membrane-less interface was generated through a technique described by Jones and
Jacobs [48]. The shock tube contained horizontal slots on two opposite walls. The gases
entered the shock tube from opposite ends, flowed toward each other, and exited through the
two slots, resulting in a fine, diffuse interface. A perturbation was then generated by gently
oscillating the vertical shock tube at a prescribed frequency to establish a standing wave. The
diffused interface was estimated to be 0.5 cm wide, and the oscillations produced a sinusoidal
perturbation. Planar laser-induced fluorescence (PLIF) was used to visualize the instability
evolution using a mixture of fluorescent acetone with air. The PLIF images were corrected for
the non-uniform laser illumination and Beer’s law attenuation.

A set of experiments was conducted for shocks with Ma = 1.11±0.01 and Ma = 1.21±0.02,
and images were captured up to 11 ms following the initial shock-interface interaction. The
pre-shock Atwood number was A− = 0.604. The evolution of the instability with spikes of
heavier fluid penetrating the lighter fluid and bubbles of lighter fluid “rising” in the heavier
fluid was investigated. The reshock phase observed when the transmitted shock reflects from
the end wall of the test section and interacts with the evolving interface was also described.
Concurrent with the arrival of the reflected shock, a reflected rarefaction wave also interacted
with the interface as seen in Fig. 4 of [23]. This initial rarefaction wave was created by the
rupture of the membrane used to generate the initial shock, was subsequently reflected from
the end (top) wall of the shock tube, and then interacted with the evolving interface. This
interaction with the reflected rarefaction wave induced the formation of additional complex
structure on the evolving interface.

3.1.1 Initial gas composition

The experiment was performed using a mixture of air and acetone initially separated from
sulfur hexafluoride (SF6) by a diffuse interface. Here it is assumed that the gas composition
consists of a mixture of 25% acetone and 75% air by volume. See Table 1 in Part 1 of this
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report [57] for a summary of the thermodynamic properties of the air(acetone) and SF6 gases.
A mixture of 50% air(acetone) and 50% SF6 by volume was assumed, yielding a single value
of the adiabatic exponent γ = 1.24815. Only the Mach 1.21 experiment is considered in the
present report. The conditions in region 1 ahead of the shock are p1 = 0.925551 bar, T1 = 296
K, and u1 = 0 cm/s. Cook, Cabot and Greenough [24] also considered this experiment prior
to reshock, and modified their simulation parameters to account for non-ideal effects in the
shock tube, such as an effectively smaller Mach number due to the outflow of gas through the
slots. In the present investigation, no such modifications are used.

3.1.2 Computational domain and interfacial perturbation

To match the shock tube test section dimensions [23], the computational domain has spanwise
dimension Ly = 8.9 cm, with the perturbed initial interface located 3 cm from the edge of the
shock tube. To obtain a test section length of 75 cm, the total length of the computational
domain along the streamwise direction is Lx = 78 cm. The adaptive domain capability in
the HOPE code [57] allows the initial domain in x to be much smaller than Lx. In the present
simulation, the initial value of Lx is chosen to be approximately 9.3 cm (see Table 2 in § 5 for
the values used in the simulations). The computational domain in the x direction is elongated
in increments of 3 cm until a total length of 78 cm is attained.

As in the experiment, in the numerical simulation the sinusoidal interfacial perturbation
(3) had amplitude a0 = 0.2 cm and wavelength λ = 5.93333 cm, and the diffuse interface had
width δ = 0.5 cm. Thus, ka0 = 0.21 � 1, so that the initial growth is in the linear regime.

3.2 Qualitative comparison of instability evolution to experimental PLIF
images

In Fig. 6, corrected PLIF density images from the Collins and Jacobs Mach 1.21 shock tube
experiment are compared to density plots from the numerical simulations at selected times
before reshock: the experimental images are presented in the middle row, the images from the
ninth-order WENO simulation are presented in the top row, and the images from the fifth-order
WENO simulation are presented in the bottom row. The grid resolution of both simulations
was 256 points per initial perturbation wavelength. Very good agreement is observed between
the numerical and experimental images. The density from the ninth-order simulation shows
sharper roll-ups than that from the fifth-order simulation.

Figure 7 continues this comparison for selected times following reshock. The ninth-order
simulation captures the secondary instability within the roll-ups at t = 6 ms. The agreement
continues to be very good, although an increasing time discrepancy between the numerical and
experimental results develops, with the simulation images lagging in time behind the PLIF
images. This time delay can be explained by the arrival of the initial rarefaction wave, which
decelerates the evolving interface, causing a progressively larger delay in the time of reshock.
The rarefaction wave also causes the formation of small-scale structures on the interface that
are amplified during reshock. Note that at late time (t = 10 ms), the experimental data
shows increased mixing and fragmentation of large structures. By contrast, the numerical
simulation shows that large structures persist. This is due to the excitation of fluctuations in
the third spatial dimension caused by the initial rarefaction wave present in the experiment
and subsequently amplified by reshock, which is not modeled in the numerical simulation.
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Figure 6: Comparison of corrected PLIF images from the experiment of Collins and Jacobs
(middle row) and the density from the ninth-order WENO simulation (top row) and from the
fifth-order WENO simulation (bottom row), both on the medium resolution grid. The gases are
air(acetone) (blue) and SF6 (red). Note the very good agreement between the experiment and
simulation. The ninth-order simulation captures more of the structure of the roll-up observed
in the experiment at late times than does the fifth-order simulation. The experimental images
are taken from Fig. 6 of Collins and Jacobs [23] (reprinted with the permission of Cambridge
University Press).
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Figure 7: Further comparison of the corrected PLIF images from the experiment of Collins and
Jacobs and the density from the numerical simulation (see Fig. 6). A progressively larger time
delay develops between the experimental and simulation images due to the rarefaction wave in
the experiments, which is not captured in the simulations. The rarefaction wave decelerates the
interface, causing reshock to occur later in time in the experiment compared to the simulation.
The experimental images are taken from Fig. 6 of Collins and Jacobs [23] (reprinted with the
permission of Cambridge University Press).
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3.3 Evolution of the amplitude prior to reshock

In this section, the perturbation amplitude growth from the numerical simulation is compared
to the experimentally-measured amplitude from Collins and Jacobs [23] and to the predictions
of the models presented in § 2. Figure 8 shows the locations of the interface and shock in the
x-t diagram from the simulation. The location of the spike and of the bubble is indicated by the
dashed lines. The horizontal distance between the spike and bubble represents the amplitude
(see Fig. 4 for a schematic of the total amplitude and the bubble and spike amplitudes).
Reshock occurs at t ≈ 6.5 ms when the shock wave refracts at the evolving interface, generating
a transmitted shock in the air(acetone) and a reflected rarefaction wave in the SF6. The
reflected rarefaction wave is not plotted in the x-t diagram. Note that the transmitted shock
moves faster, as indicated by the change in slope, corresponding to a slow-fast refraction [39].
Following reshock, the interface is compressed (as seen from the kink in the bubble and spike
locations) and moves back into the shock tube away from the end wall of the test section.
Additionally, the amplitude grows more rapidly than prior to reshock. The increased growth is
due to the additional vorticity deposited during reshock on the evolving interface. The reshock
(inversion) process occurs over ≈ 0.2–0.3 ms.

3.3.1 Numerical determination of the mixing layer width

The mixing layer width is obtained from the mole fraction as follows. In incompressible or
variable-density flows, the mole fraction is typically defined as [25]

X(x, y, t) =
ρ(x, y, t)− ρ2

ρ2 − ρ1
. (150)

However, for compressible flows this definition is not desirable, as it is unclear how ρ1 and
ρ2 should be defined. An alternative definition of the mole fraction based on the molecular
weights and on the mass fraction is therefore needed. In the present numerical simulations,
the mass fraction

m2 =
c2M2

c1M1 + c2M2
(151)

of fluid 2 (SF6) is evolved, where Mr and cr are the molecular weight and molar concentration
of fluid i, respectively. By definition, the mass fraction of fluid 1 is

m1 = 1−m2 (152)

=
c1M1

c1M1 + c2M2
. (153)

Then, the mole fraction of fluid 2 can be defined in terms of the molar concentrations by

X =
c2

c1 + c2
. (154)

Using the above definitions, define a mean molecular weight

M =
c1M1 + c2M2

c1 + c2
, (155)

which can also be obtained from the mass fractions mr as

M =
M1M2

M1m2 +M2m1
. (156)
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Finally, the mole fraction is obtained from the mass fraction m2 and M as

X =
Mm2

M2
. (157)

Equations (156) and (157) yield the desired relation X = X(M1,M2,m2) independent of the
densities, and therefore suitable for compressible flows.

The mixing layer width is obtained by spatially-averaging the mole fraction in the periodic
y-direction

〈X〉 =
1
Ly

∫ Ly

0
X(x, y, t) dy , (158)

where Ly is the width of the shock tube in the spanwise direction. The spike and bubble
locations, `s(t) and `b(t), are defined as the x position where 〈X〉 ≥ ε and 〈X〉 ≤ 1 − ε,
respectively, with ε = 0.01 in the present investigation (corresponding to a 1–99% criterion in
the mole fraction). Therefore, the total mixing layer width is numerically determined by

h(t) = `b(t)− `s(t) . (159)

Note that this definition of the mixing layer width is quite sensitive to the choice of ε. This
sensitivity will be discussed elsewhere [59].

When comparing the numerical simulation data to the predictions of the models presented
in § 2, the following conventions are used. The wavenumber is adjusted to account for the
diffuse interface by including the growth reduction factor ψ (see § 2.1.5) by

k −→ k

ψ
. (160)

Furthermore, the time and initial velocity are rescaled according to

τ = k v0 t , v0 = k A+ [u] a+
0 , (161)

where a+
0 is the post-shock amplitude and A+ is the post-shock Atwood number. Note that

the post-shock amplitude a+
0 is determined by multiplying the pre-shock amplitude a−0 by the

compression factor

ηcomp = 1− [u]
ushock

, (162)

where ushock is the velocity of the shock. The values of the pre-shock and post-shock quantities
are summarized in Table 1.

Note that all of the models predict the growth rate of the mixing layer da/dt, rather than
a. Therefore, in the following sections, the mixing layer amplitude a is numerically computed
by solving an initial value problem (here using a fourth-order Runge-Kutta scheme [16]).

3.3.2 Quantitative comparison to experimental data and simulated Schlieren im-
ages

In Fig. 9, the mixing layer amplitude from the simulation (blue) is compared with the exper-
imental measurements from Collins and Jacobs [23] (red). The mixing layer begins growing
immediately after the passage of the initial shock. The initial rapid growth saturates at ap-
proximately 4 ms, and then reshock occurs approximately 2.5 ms later. During reshock, the
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Figure 8: The x-t diagram showing the position of the interface (solid blue line), shock (red
line), and bubble and spike locations (dashed blue lines) from the simulation. The horizontal
distance between the spike and bubble represents the total amplitude.

pre-shock post-shock
a0 (cm) 0.2 0.1614
A 0.605 0.489

[u] (cm/s) 6902
ushock (cm/s) 35775 18085

ηcomp 0.8071

Table 1: Pre- and post-shock values obtained from the simulation.
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Figure 9: Comparison of the mixing layer width obtained from the numerical simulation to the
experimental data from Collins and Jacobs in the case of a Mach 1.21 incident shock. Note
the excellent agreement up to reshock. The subsequent large discrepancy is due to the arrival
of the initial rarefaction wave not modeled in the simulation.

interface is compressed by approximately 1 cm and then grows rapidly. Comparison of the
numerical data with the experimental data points shows excellent agreement up to reshock.
The difference observed after reshock is due to the arrival of the initial rarefaction wave that
is not modeled in the present simulations, as discussed in § 3.1. The initial rarefaction wave
decelerates the interface and, thus, prolongs the reshock phase to after 8 ms in the experi-
ments. The large difference observed after reshock emphasizes the importance of the reflected
rarefaction wave on the evolution of the instability. The instability evolution in this experiment
is essentially two-dimensional prior to reshock (by virtue of the manner in which the initial
perturbation was produced), and becomes three-dimensional following reshock, as the shock-
interface interaction excites fluctuations in all spatial directions. Thus, it may be expected that
a two-dimensional numerical simulation can reproduce the experimentally-measured amplitude
growth prior to reshock. However, three-dimensional effects presumably become important fol-
lowing reshock, and three-dimensional numerical simulations are necessary to correctly capture
the mixing layer width evolution and other quantities. According to Collins and Jacobs [23],
the best fit to their amplitude growth data is given by the Sadot et al. [80] model.

The wave structure observed in the numerical simulation can be investigated using simu-
lated density Schlieren images. The definition of the Schlieren function Φ used here is [66]

Φ = exp
[
−α(m2)

|∇ρ|
max |ρ|

]
, (163)

where m2 denotes the mass fraction of SF6, and

α(m2) =

{
20 if m2 > ρ

100 if m2 < ρ
, (164)
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where ρ = (ρ1 + ρ2)/2. The Schlieren shows the density gradients associated with waves and
fine-scale mixing structures.

Figure 10 shows a time sequence of simulated density Schlieren images from the numerical
simulation during reshock and at late times. The image sharply captures the diffuse interface,
the complex wave structure during reshock, and the small-scale mixing structures at late times.
Note the focusing effect of the waves and the inversion of the bubble transforming into the spike
and vice versa. The images indicate that reshock occurs over a timescale of approximately 0.2–
0.3 ms. The image corresponding to t = 11 ms also shows the arrival of the reflected rarefaction
after it has reflected from the end wall of the test section. The reflected rarefaction wave was
produced by the reshock.

3.3.3 Comparison to the predictions of impulsive models

In this section, numerical and experimental data are compared with the predictions of the
linear instability models described in § 2.1. In Fig. 11, the mixing layer amplitude from the
simulation is compared with the Richtmyer [87] model [see Eq. (11)], the Meyer and Blewett
[70] model [see Eq. (15)], the Fraley [34] model [see Eq. (17)] and the Vandenboomgaerde
et. al. [99] model [see Eq. (23)]. These models capture the initial linear growth rate of
the mixing layer for normalized times τ ≤ 1. For times τ > 1, nonlinear effects become
significant and the models significantly overestimate the mixing layer amplitude. For the initial
conditions considered here, the Richtmyer model gives the smallest slope as it uses the post-
shock Atwood number and amplitudes. The Meyer-Blewett model uses the post-shock Atwood
number, but averages the pre- and post-shock amplitudes, resulting in the largest slope. The
Vandenboomgaerde model averages the pre- and post-shock amplitudes by the pre- and post-
shock Atwood numbers, respectively, and thus, has a slightly smaller slope than that predicted
by the Meyer-Blewett model, but larger than the slope predicted by the Richtmyer model.
The Fraley model, corresponding to the exact initial slope, has a slope intermediate between
those predicted by the Meyer-Blewett and the Vandenboomgaerde models. This indicates that
the impulsive models can successfully capture the linear growth of the mixing layer, and it is
difficult to determine which model agrees best with the data. However, this is not the case for
all initial conditions, as a normalized growth rate analysis [72] would show. In this analysis,
the normalized growth rate is plotted as a function of the shock strength. The Fraley solution
is taken to be the exact solution and the impulsive models are compared to this solution. For
large shock strengths, the impulsive models exhibit large deviations from the Fraley solution,
indicating that they are no longer reliable.

Overall, all of the impulsive models correctly capture the initial growth of the mixing layer
for τ < 1. After the initial linear phase, the models do not accurately capture the late-time
evolution of the interface, as nonlinear effects become significant and the amplitude saturates.
Consequently, the late-time evolution (τ > 1) is often referred to as the nonlinear growth phase.

3.3.4 Comparison to the predictions of the Jacobs-Sheeley vortex model

The numerical data and the experimental data are compared in Fig. 12 with the predictions of
the vortex model proposed by Jacobs and Sheeley [47] [see Eq. (40)] in the case ka+

0 = 0 and
ka+

0 = 2. The first value ka+
0 = 0 corresponds to modeling the deposition of vorticity on the

interface by two large point vortices located at the midpoints of the sinusoidal perturbation.
The second value ka+

0 = 2 accounts for the delay between the deposition of vorticity and its
roll-up into two large vortices of opposite sign. While the model captures an asymptotic 1/t
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Figure 10: Simulated density Schlieren images of the two-dimensional, single-mode Richtmyer-
Meshkov instability illustrating the diffuse interface, complex wave structure during reshock,
and the small-scale structures at late times.
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amplitude growth, both the numerical and experimental data are in poor agreement with the
predictions of the model. The model underestimates the mixing layer width for ka+

0 = 0, and
overestimates the mixing layer width for ka+

0 = 2. This is expected, as the model is based
on the assumption that the initial vorticity deposited by the shock immediately coalesces into
cores and does not account for the finite-time formation of the cores.

3.3.5 Comparison to the predictions of perturbation models

The numerical data and the experimental data are compared with the predictions of the non-
linear models summarized in § 2.3. In Fig. 13, experimental and numerical data are compared
with the perturbation series solutions of Zhang and Sohn [107] [see Eq. (54)], and the per-
turbation series solution of Vandenboomgaerde et al. [98] [see Eq. (63)] of degree 9 and 11.
The comparison shows that the perturbation series successfully capture the initial growth but
quickly diverge. In particular, note that the result for the eleventh-order Vandenboomgaerde
perturbation series has a smaller radius of convergence than the ninth-order series. To expand
the radius of convergence, the series are extended via Padé approximants.

In Fig. 14, the experimental and numerical data are compared with the predictions of the
nonlinear models extended via Padé approximants. Shown are the P 0

2 Padé approximant of
Zhang and Sohn (see Eq. 55) and the P 4

6 Padé approximant of Vandenboomgaerde [see Eq.
(66)]. In addition, the empirical model of Sadot et al. [80] [see Eq. (107)] is also presented.
Note the excellent agreement between the Padé models and the measured data for both the
linear and nonlinear regime. The models show slight variations in their respective predictions.
In particular, the Padé approximant of Vandenboomgaerde appears to capture the correct
behavior at early times for τ < 1, but overestimates the width for later times. The Padé
approximant of Zhang and Sohn underestimates the width for τ < 1, but gives the correct
behavior for later times.

To determine which of the three models gives the amplitude growth in best agreement with
the simulation data, the ratio between the Zhang-Sohn (Padé), Vandenboomgaerde (Padé) and
Sadot models, and the simulation data, hmodel(t)/hsim(t), are presented in Fig. 15. The figure
indicates that the Zhang-Sohn Padé model is in best agreement with the numerical simulation
data. Collins and Jacobs [23] report that their data is in best agreement with the Sadot model.

3.4 Evolution of the mixing layer amplitude following reshock and compar-
ison to reshock models

The mixing layer amplitude following reshock is investigated here. The reshock in the simula-
tion occurs at nearly the same time as in the experiment, as confirmed by both the x-t diagram
and the mixing layer amplitude. The mixing layer width is compared to the predictions of the
Mikaelian [71] reshock model and to that of the Brouillette-Sturtevant [14] reshock model in
Fig. 16. Note that the flow following reshock is essentially incompressible (see § 4.3).

In order to fit the models, the numerical data was shifted in time and the amplitude at
reshock was subtracted out so that the new origin coincides with the conditions following
reshock. For the Mikaelian model of Eq. (141), the quantities [u]1 = 8000 cm/s and A+

1 =
0.6448 from the simulation are used. For the Brouillette-Sturtevant model of Eq. (142), the
expression (

dh
dt

)
1

= 2 k
(

[u]A+ a+
0

ψ+
+

[u]1A
+
1 a

+
1

ψ+
1

)
(165)
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Figure 11: The normalized mixing layer amplitude k [a(t)− a0] from the numerical simulation
and experimental data, together with the predictions from linear models. Time is rescaled
such that τ = kv0t, where v0 = kA+[u]a+
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for the initial mixing layer growth. For τ > 1, nonlinear effects become relevant and linear
models overestimate the mixing layer amplitude.
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Figure 12: The normalized mixing layer amplitude k [a(t)− a0] from the numerical simulation
and experimental data, together with the predictions from the Jacobs-Sheeley vortex model.
When ka0 = 0 the model underestimates the mixing layer width, and when ka0 = 2 the model
overestimates the mixing layer amplitude.
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Figure 13: The normalized mixing layer amplitude k [a(t)− a0] from the numerical simulation
and experimental data, together with the predictions from the Padé models of Zhang and Sohn
and Vandenboomgaerde. The series captures the initial growth of the mixing layer into the
nonlinear regime, but diverges rapidly. The Vandenboomgaerde eleventh-order series diverges
sooner than the ninth-order series.
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Figure 14: The normalized mixing layer amplitude k [a(t)− a0] from the numerical simulation
and experimental data, together with the predictions of the perturbation series models of
Zhang and Sohn and Vandenboomgaerde extended via Padé approximants. The prediction of
the empirical model of Sadot is also shown. Note the excellent agreement between the models
and the measured amplitude.
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Figure 15: The predictions of the Zhang-Sohn (Padé), Vandenboomgaerde (Padé), and Sadot
models for the amplitude divided by the numerical simulation data, hmodel(t)/hsim(t). Well
into the nonlinear regime, and just before reshock, the prediction of the Zhang-Sohn model is
closest to that of the simulation.
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Figure 16: The mixing layer width h(t) of a reshocked interface and the predictions of the
Mikaelian and Brouillette-Sturtevant models. The simulation data was shifted in time and the
amplitude at reshock was subtracted out so that the new origin coincides with the conditions
at reshock.
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was used, where a+
1 = 1.5 cm, [u]1 = 8000 cm/s, and the value of ψ+

1 is extrapolated as follows.
First recall that ψ is a linear function in δ/λ [see Eq. (30)], where δ is the diffusive mixing
layer width linear in the post-shock perturbation amplitude a+

0 . As a+
1 ≈ 10a+

0 and the value
of ψ+ is known, the constant C in Eq. (30) can be determined as a function of δ/λ. Then,
substituting the new value for a+

1 gives the new value of ψ+
1 .

Note that the simulation data agrees very well with the prediction of the Mikaelian model at
early times (t > 2 ms) following reshock. Vetter and Sturtevant [100] also concluded that their
experimental results were in excellent agreement with the prediction of the Mikaelian model.
For late times, the Mikaelian model tends to overestimate the growth of the mixing layer. The
Brouillette-Sturtevant model tends to underpredict the simulation data at all times following
reshock. Using the values above yields (dh/dt)1 = 1444.35 cm/s and (dh/dt)1 = 1029.05 cm/s
for the Mikaelian and Brouillette-Sturtevant models, respectively.

3.5 Circulation deposition on the interface

The circulation deposited on the interface is computed here. The circulation Γ is defined as
the line integral of the velocity field u around a closed contour C

Γ(t) =
∮
C

u·dr , (166)

where dr is the unit tangent to the oriented contour C. Using a well-known vector identity,
the above expression can be alternatively written in terms of the vorticity field ω as

Γ(t) =
∫
S

(∇× u) ·dS (167)

=
∫
S

ω·dS , (168)

where S is the surface enclosed by C and dS is the outward oriented area element.
For two-dimensional simulations, the vorticity field and the outward oriented area element

are parallel. Therefore, the circulation can be computed on a uniform rectangular grid with
spacings ∆x and ∆y using [92]

Γ(t) =
∑
i,j

ω(xi, yj , t) ∆x∆y , (169)

where the double summation is over all of the grid points in the domain.
Figure 17 shows the circulation computed to late times. Prior to reshock, the circulation

should be a constant in the absence of molecular dissipation. However, numerical dissipation
and fluctuations in the density and pressure fields in the present simulations contribute to a
very small growth in time following an initial transient. Following reshock, the circulation
immediately increases by a factor of ≈ 10 and increases rapidly following the interaction at
t ≈ 11 ms with the reflected rarefaction wave until t ≈ 15 ms, and then begins to decrease.
Wave interactions with the interface inhibit the decay of the circulation for long times following
reshock.
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Figure 17: The circulation Γ(t) computed to late time. Note the initial slow growth of the
circulation until reshock occurs, followed by a rapid increase until t ≈ 15 ms. The circulation
decreases thereafter.



4 Local and global analysis of mixing in two-dimensional, single-
mode Richtmyer-Meshkov instability with reshock

Presented in this section is a comprehensive investigation of mixing induced by the two-
dimensional Richtmyer-Meshkov instability with reshock. The analysis of mixing considers
both local and global quantities. Local analysis refers to an investigation of a quantity at
a fixed time: two types of quantities are considered—mixing fractions and spectra. Mixing
fractions are quantities averaged across the statistically-homogeneous (periodic) y-direction
(so that they are only a function of the streamwise coordinate x and time) characterizing the
extent and efficiency of mixing. Spectra of quantities inside the mixing layer are obtained as
a function of the one-dimensional wavenumber k by Fourier-transforming along the periodic
(spanwise) direction. Global analysis refers to an investigation of a wavenumber-integrated
spectrum (a statistic) or a volume-integrated quantity (a mixing fraction or primitive field) as
a function of time. Very little previous investigation of these quantities in Richtmyer-Meshkov
instability-induced mixing has been performed [103, 75]. However, Youngs [102, 103] and Cook
and Dimotakis [25] have conducted an investigation of the evolution of mixing fractions and
energy spectra for Rayleigh-Taylor instability-induced mixing.

The analysis is applied to the simulation of the Richtmyer-Meshkov instability initialized
using the Mach 1.21 Collins and Jacobs shock tube experiment, and using fifth-order WENO
reconstruction and a grid resolution of 256 points per initial perturbation wavelength, as dis-
cussed in § 3. To investigate the late-time decay of the mixing following reshock, the boundary
condition at the end of the simulated test section is modified to outflow so that reflected waves
following reshock exit the computational domain and no longer interact with the evolving
mixing layer (the decay regime, as distinct from the quasi-decay regime, in which reflected
waves are permitted to interact with the mixing layer). Particular emphasis is also placed on
comparing mixing and spectral quantities before and after reshock. The objective of this com-
prehensive investigation is to quantitatively characterize the mixing induced by the single-mode
Richtmyer-Meshkov instability before and after reshock in two dimensions, and to appreciate
the manifestations of the reflected waves in the evolution of the reshocked interface.

Note that in the present investigation, the initial condition is deterministic. Furthermore,
only one realization of the flow is simulated. Thus, the profiles, spectra, and statistics com-
puted in subsequent sections exhibit variations that would otherwise be reduced if an ensemble
average of realizations with a stochastic initial condition were used.

4.1 Time-evolution of mole, volume fraction, and mixing fraction profiles

Several averages must be introduced to define spanwise-averaged quantities across the mixing
layer (streamwise profiles), as well as fluctuations required to define energy spectra. Let angle
brackets denote an instantaneous average of a function φ(x, y, t) over the periodic (spanwise)
direction y with length Ly:

〈φ〉(x, t) =
1
Ly

∫ Ly

0
φ(x, y, t) dy , (170)

which can be interpreted as an instantaneous Reynolds average in the present investigation
(see [103] for the three-dimensional analog of this average). The Reynolds fluctuating field is

φ(x, y, t)′ = φ(x, y, t)− 〈φ〉(x, t) . (171)
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Then , the instantaneous Favre average of φ is

φ̃(x, t) =
〈ρ φ〉
〈ρ〉

, (172)

which is used for the statistical analysis of variable-density and compressible flows. The Favre
fluctuating field is

φ(x, y, t)′′ = φ(x, y, t)− φ̃(x, t) . (173)

Thus, the Reynolds- and Favre-averaged fields are functions only of the streamwise coordinate
x and time, while the fluctuating fields are functions of both the streamwise and spanwise
coordinates and time.

4.1.1 Evolution of the mole fraction profile 〈X〉

Quantities previously introduced in the context of the analysis of Rayleigh-Taylor mixing
by Youngs [103] and Cook and Dimotakis [25] are considered and adapted to the Richtmyer-
Meshkov instability here. First consider the mole fraction X(x, y, t) averaged over the spanwise
direction y, 〈X〉(x, t). Consider two fluids with constant densities ρ1 and ρ2 > ρ1. The mole
fraction X defined in Eq. (157) varies from X = 0 in the first fluid to X = 1 in the second
fluid, so that the mole fraction profile 〈X〉(x, t) gives the relative distribution of mass of the
two fluids within the mixing layer. If the two fluids are uniformly-distributed over the entire
volume under consideration, as expected in complete homogeneous mixing, then 〈X〉 = 0.5.

To facilitate the comparison of the mole fraction profile at different times, the streamwise
coordinate is recentered by the location of the midpoint between the bubble and spike position.
The left column of Fig. 18 shows the recentered mole fraction profile at time intervals of 1 ms
from t = 0 to t = 17 ms. The mole fraction profile increases from 〈X〉 = 0 in the air(acetone)
mixture to 〈X〉 = 1 in SF6. The increasing width of the profile shows the spatial spreading of
the mixing layer in time. The curves further display the varying distribution of mass inside
the mixing layer prior to reshock. Initially, at t = 0 ms the profile is monotonically-increasing
as the initial interface is slightly diffused. After the initial passage of the shock, the profile
increases in width and becomes non-monotonic with a peak developing within the air(acetone)
gas mixture, and moving to the left and increasing in magnitude in time. This is due to spikes
of SF6 penetrating into the air(acetone), forming the characteristic roll-ups. These roll-ups
are a consequence of the entrainment of additional SF6 within the air(acetone) mixture. The
bubbles of air(acetone) “rise” in the SF6, causing an overall decrease in 〈X〉 in the SF6. Reshock
compresses the averaged mole fraction, as shown between t = 6 and t = 7 ms. The width of the
mixed layer increases rapidly following reshock. Reshock also generates additional structure,
which is reflected in the distribution of 〈X〉 (now displaying several localized peaks). For later
times, the growth of the mixing layer slows and the localized peaks decrease in magnitude, and
〈X〉 begins to approach 0.5, indicating a well-mixed distribution of mass within the layer.

The right column of Fig. 18 shows the mole fraction profile 〈X〉 with the recentered
streamwise coordinate rescaled by the mixing layer width h. This rescaling adjusts the profiles
so that the rescaled edges of the mixing layer are identical at different times, and results in
a loss of information regarding the width of the layer, but facilitates the investigation of the
mechanisms of the mixing process and the distribution of mixed mass within the layer. The
figures at early times indicate the transfer of mass between the bubbles and spikes, causing the
non-monotonic profiles noted above. Prior to reshock, the profile evolves smoothly in space
and time. Reshock causes a fundamental change in the distribution of mass with additional
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Figure 18: Time-evolution of the mole fraction profile 〈X〉 with the x-axis recentered (left
column), and 〈X〉 with the x-axis recentered and rescaled by the total mixing layer width h
(right column).
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structures forming, as reflected in the more complex structure of the profile than at earlier
times. For late times, the profile begins to collapse and exhibit increased oscillations resulting
from the break-up of structures.

4.1.2 Evolution of the profiles of the averaged chemical product from a fast kinetic
reaction 〈Xp〉, Xp(〈X〉) and of the mixing fraction ξ

A quantitative measure of mixing can be defined as follows. Suppose that the two fluids
undergo a fast kinetic reaction, so that the amount of product produced (see Koochesfahani
and Dimotakis [50] and Cook and Dimotakis [25]) is

Xp(x, y, t) =

{
X
Xs

for X ≤ Xs

1−X
1−Xs

for X > Xs

, (174)

where Xs is a parameter chosen to be Xs = 1/2 here (indicating that the product is composed
of one mole of each reactant), and is limited by the amount of reactant (either the heavy or
the light fluid). The profile of the averaged product mole fraction 〈Xp〉(x, t) ∈ [0, 1] provides
information on how well mixed the two reactants are. The maximum amount of reactant mole
is Xp(〈X〉) ≥ 〈Xp〉 if the two reactants were homogeneously mixed in the spanwise direction.
The ratio

ξ(x, t) =
〈Xp〉

Xp(〈X〉)
, (175)

which is between zero and unity, also locally characterizes how well mixed the two fluids are.
If the fluids were completely and homogeneously mixed, 〈Xp〉 = Xp(〈X〉), so that ξ(x, t) = 1.

The left column of Fig. 19 shows the time-evolution of the averaged mole profile 〈Xp〉.
The initial diffusion layer is well-mixed, with a rapid decrease in 〈Xp〉 between t = 0 and 1
ms, as expected; 〈Xp〉 broadens and rapidly develops sharp cusps at the edges of the mixing
layer x/h(t) ≈ ±0.5 as the spikes of heavy fluid penetrate into the lighter fluid and bubbles of
the light fluid “rise” in the lighter fluid (and the two fluids become less mixed). At these very
early times in the instability evolution, 〈Xp〉 is nearly-symmetric, with values ranging from
≈ 0.05–0.06 over most of the layer. A pronounced asymmetry develops for t > 2 ms: as the
roll-ups form, a further peak within the air(acetone) mixture develops, corresponding to well-
mixed fluid in the cores. Reshock significantly increases the product mole 〈Xp〉, as additional
fine-scale structures form; 〈Xp〉 exhibits significant oscillations following reshock, which persist
to late times. At late times the fluids tend to be more mixed and larger peaks develop in the
SF6, corresponding to the arrival of multiple reflected waves that produce increased mixing
at one end of the mixing layer. The gases tend to be less mixed in the region closer to the
air(acetone) than in the region closer to the SF6.

The right column of Fig. 19 shows the mole fraction of the chemical product if the two fluids
were completely mixed, Xp(〈X〉). This quantity measures the fraction of the maximum amount
of productXp observed if the two reactants were completely mixed 〈X〉. This quantity indicates
the maximum possible value of 〈Xp〉. At early times, Xp(〈X〉) is peaked at x/h = 0. Like
〈Xp〉, Xp(〈X〉) exhibits a complex spatial structure, with large oscillations following reshock.

The left column of Fig. 21 shows the ratio ξ defined in Eq. (175). This quantity constitutes
a local mixing fraction characterizing how well the two fluids are mixed in the layer. For t > 0,
ξ decreases rapidly, attaining its largest values near the edges of the mixing layer. At early
times t < 2 ms, ξ ≈ 0.1 across most of the layer. For t > 2 ms, ξ develops peaks on the
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Figure 19: Time-evolution of the product mole fraction profile 〈Xp〉 (left column) and the prod-
uct mole fraction if the fluids were homogeneously mixed Xp (〈X〉) with the x-axis recentered
and rescaled by the total mixing layer width h (right column).
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air(acetone) side. Reshock amplifies ξ and induces strong oscillations across the mixing layer.
At times t > 12 ms, ξ is strongly peaked on the air(acetone) side.

4.1.3 Evolution of the profiles of the volume fractions 〈f1〉, 〈f2〉 and of the mixing
fractions ξ and θ

The volume fractions (134) can be averaged over the spanwise direction to give the volume
fraction profiles 〈fr〉(x, t). Figure 20 shows the volume fraction profiles 〈f1〉 and 〈f2〉, where
1 and 2 correspond to the air(acetone) and SF6, respectively. Note that the spatio-temporal
evolution of 〈f2〉 is very similar to that of 〈X〉.

The local molecular mixing fraction θ(x, t) is obtained from the averaged volume fractions
and the average of their product [102, 103]

θ(x, t) =
〈f1f2〉
〈f1〉〈f2〉

. (176)

The mixing fractions ξ and θ are shown in the left and right columns of Fig. 21, respec-
tively. Note the similarity between θ and ξ due to the fact that both quantities are a measure
of mixing, indicating that both mechanisms—the fast kinetic reaction and the diffusion pro-
cess characterized by θ—provide a very similar qualitative description of mixing. Note that
this ‘molecular mixing’ is induced by stirring and by the numerical diffusion present in the
algorithm, rather than by molecular processes.

4.2 Time-evolution of mixing fractions and of volume-averaged quantities

The time-evolution of global mixing fractions such as the production quantities Pt and Pm,
and the mixing fractions Ξ and Θ are presented here. The volume-averaged streamwise and
spanwise velocity components, and pressure are also investigated.

The lengthscale W is shown in the top right of Fig. 22, and qualitatively resembles the
evolution of the mixing layer width h shown in the top left of Fig. 22. Note that these
lengthscales do not appear to exhibit a simple power-law growth at late times.

4.2.1 Evolution of Pt, Pm, Θ, and Ξ

From the product mole fraction Xp, the total chemical product Pt is obtained by integrating
〈Xp〉 over the mixing layer width,

Pt(t) =
∫ ab(t)

as(t)
〈Xp〉dx . (177)

The total chemical product Pt can be compared with the maximum amount of chemical product

Pm(t) =
∫ ab(t)

as(t)
Xp(〈X〉) dx (178)

≥ Pt(t) (179)

measuring the product obtained if both reactants were homogeneously mixed.
The time-evolution of Pt and Pm is shown in the middle row of Fig. 22. Before reshock,

Pt increases, indicating an increase in mixing, while Pm decreases. The decrease in Pm in-
dicates that the maximum molar product decreases due to the presence of the bubble which
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Figure 20: Time-evolution of the volume fractions 〈f1〉 (left column) and 〈f2〉 (right column)
with the x-axis recentered and rescaled by the total mixing layer width h.
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Figure 21: Time-evolution of the molecular mixing fractions ξ (left column) and θ (right
column) with the x-axis recentered and rescaled by the total mixing layer width h.
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creates large, unmixed structures within the mixing layer. During reshock, the mixing layer
is compressed, inducing additional mixing as measured by Pt. Following reshock, Pt increases
rapidly, indicating significantly increased mixing. As the mixing progresses, large unmixed
structures form, causing the decrease in Pm.

The ratio of the total and maximum chemical product gives the mixing fraction [25]

Ξ(t) =
Pt(t)
Pm(t)

, (180)

with increasing values of Ξ signifying more complete mixing. From the local molecular mixing
fraction θ, another global molecular mixing fraction can be defined as [102]

Θ(t) =

∫ ab(t)
as(t)

〈f1 f2〉dx∫ ab(t)
as(t)

〈f1〉〈f2〉dx
, (181)

with increasing values of Θ also corresponding to more complete mixing.
The time-evolution of the mixing fractions Θ and Ξ is also shown in the middle row of Fig.

22. As was observed for ξ and θ in Fig. 21, the mixing fractions Ξ and Θ give qualitatively
similar information. As the fluids mix following the initial shock passage, the mixing fractions
increase. A spike is observed during reshock as the mixing layer is compressed and the overall
mixing is increased. Following reshock, the mixing fractions increase at a faster rate than
before reshock, indicating that reshock increases mixing.

4.2.2 Evolution of the volume-averaged velocity components and pressure

The time-evolution of the volume-averaged streamwise and spanwise velocities, and pressure
are presented here. In two dimensions, define the volume average of φ(x, y, t) by

〈φ〉xy (t) =
1

h(t)Ly

∫ ab(t)

as(t)

∫ Ly

0
φ(x, y, t) dy dx . (182)

The volume-averaged streamwise and spanwise velocity components 〈u〉xy and 〈v〉xy, respec-
tively, are shown in the bottom row of Fig. 22 as a function of time. As expected, 〈v〉xy = 0 for
all time. Note that 〈u〉xy is the velocity of the interface, which rapidly decreases at reshock;
〈u〉xy changes sign at reshock and remains nearly constant over t ≈ 6.5–10.5 ms, indicating an
inversion of the direction of the mean motion of the mixing layer, as well as the effect of the
reflected rarefaction wave. Note that 〈u〉xy → 0 at late times, as the reflected waves following
reshock decelerate the interface and eventually bring it to rest.

The volume-averaged pressure 〈p〉xy is also shown in the bottom row of Fig. 22 as a function
of time. The average pressure reflects the effect of the reshock (which significantly increases
the pressure during compression) and of the rarefaction wave (which decreases the pressure).
A nearly constant value of 〈p〉xy is maintained over t ≈ 6.5–10.5 ms. The temporal evolution of
both 〈u〉xy and 〈p〉xy clearly show the interaction of the reflected waves with the mixing layer.

4.3 Time-evolution of the fluctuating kinetic energy, fluctuating enstrophy,
density variance, and pressure variance spectra

The time-evolution of the spectra corresponding to the fluctuating kinetic energy, fluctuating
enstrophy, density variance, and pressure variance are investigated here. An examination of
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Figure 22: Time-evolution of the mixing layer width as measured by h(t) and W (t) in the top
row. The mixing fractions Pt, Pm, Θ, and Ξ are shown in the middle row. The volume-averaged
streamwise and spanwise velocities 〈u〉xy and 〈v〉xy, and the volume-averaged pressure 〈p〉xy
are shown in the bottom row.
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these spectra provides information on the growth of different scales of the flow, as well as on the
energy transfer process among scales. Summarized here is the general procedure used in the
present investigation to determine the spectrum of a quantity φ(x, y, t) defined in the mixing
layer x ∈ [as, ab]. Typically, φ is a Reynolds fluctuation φ′ defined in Eq. (171) or a Favre
fluctuation φ′′ defined in Eq. (173). The spectral analysis used here adapts the formulations
of Lesieur et al. [61] and Mügler and Gauthier [75, 76] applied to inhomogeneous flows with
a direction of statistical-homogeneity (periodicity). The fundamental procedures of Fourier
analysis are reviewed elsewhere [36, 17, 83].

First, the Fourier transform is taken in the periodic spanwise direction to obtain

φ̂(k, x, t) =
1
2π

∫ ∞

−∞
φ(x, y, t) exp (−ik y) dy . (183)

Numerically, the discrete Fourier transform of φ(x, y, t) is taken in the periodic y-direction to
obtain the one-dimensional spectrum,

φ̂(kn, x, t) =
1
Ny

Ny−1∑
n=0

φn(x, t) exp (−ikn ∆y) , (184)

where n = 0, 1, ..., Ny, and Ny is the number of grid points in the y-direction with uniform grid
spacing ∆y, and

kn =
2πn
Ny ∆y

(185)

is the discrete wavenumber (n.b., in the subsequent analysis, the units of k are cm−1). Such a
spectrum is appropriate for a two-dimensional flow having one direction of statistical-homogeneity,
in which periodic boundary conditions are assumed.

The energy associated with each Fourier mode k is obtained by averaging over the extent
of the mixing layer to obtain the one-dimensional energy spectrum of the quantities φ and ψ,

Eφψ(k, t) =
1

2h(t)

∫ ab(t)

as(t)

[
φ̂(k, x, t) ψ̂(k, x, t)∗ + φ̂(k, x, t)∗ ψ̂(k, x, t)

]
dx , (186)

where h is given by Eq. (159) and ∗ indicates complex conjugation. Numerically, this inte-
gration over the mixing layer width is performed using the trapezoidal rule. In the results
presented below, all modes above the Nyquist wavenumber (127) are neglected [83]. The spec-
trum Eφψ(k, t) provides information on the energy content of all of the scales present in the
statistical correlation between φ and ψ as a function of time. This constitutes a local anal-
ysis, as modal information is obtained within the mixing layer as a function of scale. The
characteristic scale of a structure with wavenumber k is ` ∼ 1/k.

The spatial profiles of the one-dimensional spectral density

Eφψ(kn, x, t) =
φ̂(kn, x, t) ψ̂(kn, x, t)∗ + φ̂(kn, x, t)∗ ψ̂(kn, x, t)

2
(187)

can also be considered, in addition to the spatially-integrated spectra (186). The usual energy
spectrum corresponds to ψ = φ:

Eφφ(kn, x, t) =
∣∣∣φ̂(kn, x, t)

∣∣∣2 (188)
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Figure 23: Time-evolution of the streamwise and spanwise fluctuating kinetic energy spectra
Eu′′u′′(k, t) (left column) and Ev′′v′′(k, t) (right column), respectively.
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with

Eφφ(kn, t) =
1
h(t)

∫ ab(t)

as(t)

∣∣∣φ̂(kn, x, t)
∣∣∣2 dx . (189)

Figures 23 and 24 show the time-evolution of the streamwise and spanwise fluctuating
kinetic energy spectra per unit volume Eu′′u′′(k, t) and Ev′′v′′(k, t), respectively, and the total
fluctuating kinetic energy spectrum per unit volume

E(k, t) = Eu′′u′′(k, t) + Ev′′v′′(k, t) . (190)

Oscillations are present in the spectra for small and intermediate wavenumbers k at early times,
and following reshock. These oscillations are damped out at late times, as indicated by the
smoothly decaying spectra at large t. Reshock induces a jump in the energy spectra between
t = 6 ms and t = 7 ms at all scales of the flow by exciting a wide spatial range of fluctuations,
thereby imparting additional energy into the mixing layer. For times t > 8 ms, the energy
spectra appear to decay very slowly. Note that Eu′′u′′(k, t) is peaked at k ≈ 1.5, while the peak
of Ev′′v′′(k, t) corresponds to the largest scale of the flow. As expected, there is more energy
content in the streamwise velocity fluctuations than in the spanwise velocity fluctuations. For
the same reason, the evolution of E(k, t) is dominated by that of Eu′′u′′(k, t). There is no
apparent power-law scaling of the spectra over the limited range of scales supported by the
modest grid resolution. The spectra turn up slightly at large wavenumbers due to aliasing
error.

The enstrophy density is

Ω(x, y, t) =
|ω(x, y, t)|2

2
. (191)

The volume integral of the enstrophy density yields the enstrophy

Ω(t) =
∫∫

Ω(x, y, t) dxdy . (192)

The time-evolution of the fluctuating enstrophy spectrum per unit volume Eω′′ω′′(k, t) is shown
in Fig. 24. In a homogeneous flow, the enstrophy is related to the kinetic energy spectrum by
Eω′′ω′′(k, t) = k2E(k, t), so that the peak of the enstrophy spectrum is weighted toward smaller
scales than that of the kinetic energy spectrum. The enstrophy spectrum is less steep than the
fluctuating kinetic energy spectrum. As in the case of E(k, t), reshock primarily amplifies the
enstrophy spectrum but does not change its shape. A slow decay of the enstrophy spectrum is
also observed for late times. Before and immediately after reshock, the fluctuating enstrophy
spectrum is more oscillatory than the fluctuating kinetic energy spectrum, particularly at large
wavenumbers.

To study the spectral anisotropy of the velocity components, the time-evolution of the
ratio of the streamwise and spanwise fluctuating kinetic energy spectra Eu′′u′′(k, t)/Ev′′v′′(k, t)
is shown in Fig. 25. Spectral isotropy is achieved if all scales contain the same amount of
energy, i.e., if the ratio approaches unity. As seen in the figure, significant spectral anisotropy
exists in the intermediate and small scales, with the ratios attaining a nearly constant value
at large wavenumbers. It is interesting to note that a sharp increase in the ratio of the
streamwise and spanwise fluctuating kinetic energy is observed following the arrival of reshock
and the interaction with the reflected rarefaction wave. This is expected as the arrival of the
waves excites velocity fluctuations in all directions, therefore reducing the ratio. However, as
the instability further evolves following the interaction with the waves, the fluctuations in the
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Figure 25: Time-evolution of the ratio of the streamwise and spanwise fluctuating kinetic
energy spectra Eu′′u′′(k, t)/Ev′′v′′(k, t).
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Figure 26: Time-evolution of the density variance spectrum Eρ′ρ′(k, t) (left column) and the
pressure variance spectrum Ep′p′(k, t) (right column).
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streamwise kinetic energy dominate, and this ratio sharply increases. The ratio again decreases
at late times, as dissipative mechanisms damp the larger streamwise fluctuations.

Figure 26 shows the time-evolution of the density variance spectrum per unit volume
Eρ′ρ′(k, t) and the pressure variance spectrum per unit volume Ep′p′(k, t). The density vari-
ance spectrum shows very little variation with time, indicating that density fluctuations are
not as strongly affected by reshock as other quantities. Moreover, the magnitude of the den-
sity variance spectrum is very small for all times, indicating that the density variance is very
small and that the flow is, therefore, nearly-incompressible. Additional numerical evidence
exists to support this conclusion in Richtmyer-Meshkov unstable flows [40]. The issue of near-
incompressibility after reshock will be revisited in Part 4 of this report [59]. The evolution of
the spectrum also shows the interaction of reflected waves with the mixing layer, which have
a profound effect on the pressure variance spectrum. The pressure variance spectrum exhibits
a jump as a result of reshock at t = 7 ms, and also exhibits a jump at t = 11 ms when the
reflected rarefaction wave interacts with the mixing layer. At late times, both the pressure and
density variance spectra exhibit a slow decay in time. There is no apparent power-law scaling
of these spectra.

4.4 Time-evolution of statistics

Statistics are obtained by summing the energy over all modes,

Eφφ(t) =
φ2

2
(193)

=
∫ ∞

0
Eφφ(k, t) dk .

Numerically, this integral is a sum over all wavenumbers up to the Nyquist wavenumber (127)
kmax. As a numerical check, statistics were computed by summing the energy spectra over all
wavenumbers,

∑Ny

n=1Eφφ(kn, t), and directly by a volume integration
∑

i∈S
∑Ny

j=1 φ(xi, yj , t)2/2
where S = {i : xi ∈ [as(t), ab(t)]} to ensure their accurate computation.

Figure 27 shows the time-evolution of the streamwise and spanwise fluctuating kinetic
energy per unit volume

Eu′′u′′(t) =
u′′2

2
(194)

=
∫ ∞

0
Eu′′u′′(k, t) dk

and

Ev′′v′′(t) =
v′′2

2
(195)

=
∫ ∞

0
Ev′′v′′(k, t) dk ,

and the total fluctuating kinetic energy per unit volume

E(t) = Eu′′u′′(t) + Ev′′v′′(t) (196)

illustrating the relative magnitude of the two components. Initially, Ev′′v′′(t) is much smaller
than Eu′′u′′(t) due to the fact that the initial shock primarily excites modes in the streamwise
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Figure 27: Time-evolution of the fluctuating kinetic energy E(t) and its components, the
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Figure 28: Time-evolution of the ratio of the streamwise and spanwise fluctuating kinetic
energy Eu′′u′′(t)/Ev′′v′′(t). The ratio approaches unity at late-time, indicating an approach
to statistical isotropy. Note, however, that the kinetic energy spectra are still spectrally-
anisotropic at late times.
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direction (as shown in Fig. 23). The kinetic energy decreases following the initial shock, while
reshock deposits additional vorticity and amplifies the kinetic energy. The reshock and the
subsequent reflected waves also excite spanwise velocity fluctuations. The contributions from
the spanwise and streamwise fluctuations are very similar at late times, indicating an approach
of the flow to statistical (but not spectral) isotropy. The ratio of the spanwise and streamwise
kinetic energy is shown in Fig. 28. The ratio approaches unity at late time, indicating an
approach to isotropy.

The time-evolution of the fluctuating enstrophy per unit volume

Eω′′ω′′(t) =
ω′′2

2
(197)

=
∫ ∞

0
Eω′′ω′′(k, t) dk

is also shown in Fig. 27. Note the large increase in the fluctuating enstrophy during reshock.
Following reshock, the enstrophy decays, but the arrival of the reflected waves compensates
for the decrease and a nearly constant value is observed. Finally, after the interaction of the
reflected rarefaction with the mixing layer at t = 11 ms, the enstrophy decays.

Finally, consider the time-evolution of the density variance

Eρ′ρ′(t) =
ρ′2

2
(198)

=
∫ ∞

0
Eρ′ρ′(k, t) dk

and the pressure variance

Ep′p′(t) =
p′2

2
(199)

=
∫ ∞

0
Ep′p′(k, t) dk .

The density variance is not as significantly affected by reshock and by other reflected waves as
the other quantities, and remains nearly constant in time. By contrast, the pressure variance
is much more sensitive, exhibiting peaks as waves interact with the mixing layer. With the
exception of Eρ′ρ′(t), all of the remaining statistics decrease from their initial values until
reshock. Also, with the exception of Eρ′ρ′(t), all of the remaining statistics decrease sharply
following reshock. With the present reflecting boundary condition, the simulation does not
achieve a purely-decaying state at late times. Later in § 4.6, the reflecting boundary condition
is changed to outflow in order to remove the effects of reflected waves following reshock.

4.5 Comparison of mixing quantities at selected times

In the previous sections, a temporal progression of each quantity was presented at time intervals
of 1 ms. Here, comparisons of quantities at selected times are presented together to further
elucidate the structure of the mixing as characterized by each quantity. The times are selected
to reflect key aspects of the flow evolution:

1. at t = 6 ms after the initial interaction with the shock but before reshock ;
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2. at t = 7 ms immediately after reshock ;

3. at t = 12 ms for large times after reshock, and;

4. at t = 18 ms for late times.

Also presented is a comparison of quantities just before and after reshock to quantitatively
investigate the effect of reshock on the mixing process. These quantities include molar profiles,
volume fraction profiles, mixing fractions, and fluctuating energy spectra. Note that in the
figures, quantities are shown on an x-axis recentered according to the location of the centerline
of the mixing layer.

4.5.1 Comparison of mixing quantities at early and late times

Figure 29 shows the mixing profiles and spectra at t = 6 ms in the left column and at t = 7 ms
in the right column. Consider first the mole fraction profile at t = 6 ms just before reshock.
The mole fraction profile 〈X〉 shows the distribution of mass, indicating the presence of the
well-developed roll-up corresponding to the peak. To its right, the decrease in 〈X〉 corresponds
to the bubble of the lighter air(acetone) rising into the heavier SF6. The plot of 〈Xp〉 shows
localized peaks, corresponding to the center of the roll-ups where mixing is most intense. The
value of 〈Xp〉 decreases at the boundaries of the roll-up region. The profile of X (〈Xp〉) shows
a first peak corresponding to the entire roll-up region and a second peak corresponding to the
tip of the bubble. Finally, the mixing fraction ξ shows a central peak indicates that mixing is
most intense at the center of the roll-ups. Additional peaks are observed at the tip of the spike
and at the tip of the bubble, resulting from the rapid decrease in those regions of X (〈Xp〉).
The volume fraction profiles 〈f1〉 and 〈f2〉 show the relative volumetric distribution of the two
fluids across the mixing layer. The molecular mixing fraction θ shows that the two fluids are
mixed the most in the roll-up region. Finally, the fluctuating kinetic energy spectrum E(k, t)
shows that most of the energy is contributed by the streamwise velocity component.

Consider the mole fraction profile at t = 7 ms shortly after reshock. The mass is more
evenly distributed, as measured by the monotonic profile of 〈X〉. Note that the peak previously
observed at t = 6 ms has disappeared as a result of the mass redistribution. Mixing is most
intense closer to the pure air(acetone), as measured by 〈Xp〉 and ξ. The decrease in Xp (〈X〉)
close to the air(acetone) mixture indicates the presence of large, low-density regions. The
volume fraction profile 〈f1〉 shows qualitatively similar behavior.

Figure 30 shows the mixing profiles and spectra at t = 12 ms in the left column and at
t = 18 ms in the right column. Consider the mole fraction profile 〈X〉 at t = 12 ms, which
shows a steadily increasing distribution of mass across the layer. This mass is well-mixed in
the layer, as indicated by 〈Xp〉. However, large structures are present near the center of the
layer, as indicated by the large values of Xp (〈X〉). The plot of ξ indicates a well-mixed region
closer to the air(acetone). However, large, low-density regions are present as Xp (〈X〉) is very
small, due to the very small amount of SF6, as indicated by 〈X〉. Instead, a region with more
mixing is observed closer to the center of the mixing layer. The quantities at t = 18 ms show
increased homogeneous mixing as indicated by: (1) a monotonic distribution of mass captured
by 〈X〉, and the volume fraction profiles 〈f1〉 and 〈f2〉; (2) by a distribution of 〈Xp〉 that does
not exhibit large peaks, and; (3) by a value of Xp (〈X〉) exhibiting a nearly constant mean
value. Further note that the fluctuating kinetic energy spectrum exhibits little change from
t = 12 ms to t = 18 ms. The streamwise component continues to dominate the spanwise
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Figure 29: Profiles of 〈X〉, 〈Xp〉, Xp(〈X〉), ξ, 〈f1〉, 〈f2〉, θ, and the fluctuating kinetic energy
spectrum E(k, t) and its components at t = 6 ms (left column) and at t = 7 ms (right column).
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Figure 30: Profiles of 〈X〉, 〈Xp〉, Xp(〈X〉), ξ, 〈f1〉, 〈f2〉, θ, and the fluctuating kinetic energy
spectrum E(k, t) and its components at t = 12 ms (left column) and at t = 18 ms (right
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component by approximately an order of magnitude in the large and intermediate scales, and
by approximately three orders of magnitude in the smallest scales.

4.5.2 Comparison of mixing quantities before and after reshock

Comparisons of quantities at t = t− = 6.38 ms immediately prior to reshock and at t = t+ =
6.68 immediately following reshock are presented here. The mole fraction profiles are shown
in Fig. 31. The x-axis has been recentered and rescaled to provide an immediate comparison
of the quantities. The following convention is adopted: quantities before and after reshock are
shown in blue and red, respectively. The mole fraction profile 〈X〉 exhibits a complex structure
resulting from the compression during reshock. The production quantity 〈Xp〉 increases during
reshock, resulting in greater overall mixing. The largest peak in 〈Xp〉 located near the pure
SF6 is a consequence of the inversion, which flattens the tip of the bubble and also creates
small-scale structures. The volume fractions, as well as the mixing fractions θ and ξ, are
shown in Fig. 32. The volume fraction profiles 〈f1〉 and 〈f2〉 show a sharp change close to the
pure SF6 region resulting from the flattening of the bubble front. Note the strongly increased
mixing, as measured by the mixing fractions θ and ξ following reshock.

The fluctuating kinetic energy spectrum shown in Fig. 33 sharply increases following
reshock. The fluctuating enstrophy, and pressure variance spectra also show sharp increases
following reshock. By contrast, the density variance spectrum increases only slightly following
reshock.

Finally, Fig. 34 shows the ratio of spectral quantities after and before reshock to quantify
the amplification in energy as a function of the wavenumber k. The fluctuating kinetic energy
spectrum E(k, t) is amplified uniformly by a factor of ≈ 200 for large wavenumbers. The largest
amplification occurs at the largest scales. For the remaining spectra, the largest amplification
occurs in the intermediate scales. The fluctuating enstrophy spectrum Eω′′ω′′(k, t) is amplified
differently in different wavenumber regions. The amplification is large for small wavenumbers,
reaching a peak of ≈ 1300 near k = 30. The amplification reduces for large wavenumbers and
oscillates about a value of ≈ 100. The density variance spectrum Eρ′ρ′(k, t) does not undergo
significant amplification compared with the other spectra, and shows an average amplification
of ≈ 2.5. By contrast, the pressure variance spectrum undergoes the most amplification,
showing a peak of ≈ 6× 106 for k ≈ 20–25 before relaxing to ≈ 106 at large wavenumbers.

4.6 The effects of reflected waves: outflow and reflecting boundary condi-
tions

Following reshock, the mixing layer undergoes further interactions with reflected waves from
the end wall of the shock tube test section. The most significant reflected wave is the rarefac-
tion wave formed during reshock. This wave interacts with the mixing layer at t ≈ 10 ms.
The interaction with the rarefaction wave causes the formation of a compression wave, which
interacts with the mixing layer at t ≈ 15 ms, as seen in 〈v〉xy and 〈p〉xy in Fig. 22. In this
section, the boundary condition at the right end of the computational domain (corresponding
to the end wall of the test section) is varied from reflecting to outflow immediately following
reshock. This change allows the reflected rarefaction wave created during reshock to exit the
computational domain, so that no further interactions of waves with the mixing layer occur.
The purpose of this study is to investigate the properties of mixing in the decay regime, as dis-
tinguished from those in the quasi-decay regime occurring when reflected waves interact with
the evolving interface following reshock. The following convention is adopted in this section.
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Figure 31: Comparison of 〈X〉, 〈Xp〉, and Xp(〈X〉) at t− = 6.38 ms and at t+ = 6.68 ms.
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Figure 32: Comparison of 〈f1〉 and 〈f2〉 and θ at t− = 6.38 ms and at t+ = 6.68 ms
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Figure 33: Comparison of the fluctuating kinetic energy spectrum E(k, t), fluctuating enstrophy
spectrum Eω′′ω′′(k, t), density variance spectrum Eρ′ρ′(k, t), and pressure variance spectrum
Ep′p′(k, t) at t− = 6.38 ms and at t+ = 6.68 ms.
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Results obtained when the reflected rarefaction wave exits the computational domain and does
not interact with the mixing layer (outflow boundary conditions) are shown in red, and results
obtained when the reflected waves interact with the mixing layer (reflecting boundary condi-
tions) are shown in blue. The results overlap from the time of reshock t = 6 ms until t ≈ 10
ms when the reflected rarefaction wave interacts with the mixing layer. In general, note that
quantities computed with the outflow boundary condition are smoother compared with those
computed with the reflecting boundary condition, due to the absence of wave interactions.

4.6.1 Comparison of mixing layer width, mixing fractions, and profiles

The top row of Fig. 35 shows the time-evolution of the mixing layer width h(t) and the
lengthscale W (t). The reflected rarefaction amplifies the growth rate of the mixing layer. Also
shown in the plot of h(t) are the predictions of the Mikaelian and the Brouillette-Sturtevant
models for the reshocked interface growth. These quantities were previously shown in Fig.
16 for reflecting boundary conditions. After t = 11 ms, the amplitude corresponding to the
outflow boundary condition has a considerably smaller growth rate than that corresponding
to the reflecting boundary condition, showing that the reflected rarefaction wave amplifies the
growth of the mixing layer. The growth of W (t) qualitatively resembles that of h(t).

The production and mixing fractions Pt, Pm, Ξ, and Θ are shown in the middle row of
Fig. 35. Consider the time-evolution of Pt and Pm. The simulation with the outflow boundary
condition yields a slightly larger value of Pt than the reflecting boundary condition simulation.
The rarefaction wave increases the mixing layer width and therefore, the overall production
fraction decreases when averaged over a larger mixing layer. Similarly, Pm corresponding to
the outflow boundary condition is smaller than that corresponding to the reflecting bound-
ary condition, as the amount of product is decreased. The additional reflected waves induce
oscillations in Pt and Pm.

Consider the the time-evolution of the mixing fractions Ξ = Pt/Pm and Θ. For the outflow
boundary condition, Ξ and Θ are larger than for the reflecting boundary condition, as the
reflected rarefaction wave increases the mixing layer width and, thus, decreases the overall
mixing as measured by these fractions.

The time-evolution of the volume-averaged streamwise and spanwise velocities 〈u〉xy and
〈v〉xy, and pressure 〈p〉xy are shown in the bottom row of Fig. 35. As expected, 〈u〉xy does
not approach zero at late times in the case of the outflow boundary condition, but remains
at a nearly constant value following reshock. In both cases, 〈v〉xy = 0. The volume-averaged
pressure 〈p〉xy also remains at a nearly constant value following reshock.

4.6.2 Comparison of statistics

A comparison of the evolution of statistics for reflecting and outflow boundary conditions
is shown in Fig. 36. Consider the fluctuating kinetic energy per unit mass E(t) and its
components Eu′′u′′(t) and Ev′′v′′(t). In the case of the outflow boundary condition, the energy
is not increased by the reflected waves, and therefore decays. The reflected rarefaction wave also
increases the energy in the spanwise component, contributing to the statistical isotropization
of the flow. This is not observed in the case of the outflow boundary condition, in which both
components retain their separation.

Consider the evolution of the fluctuating enstrophy Eω′′ω′′(t). The enstrophy for the case
of reflecting and outflow boundary conditions are very similar, indicating that the reflected
waves do not increase the enstrophy significantly.
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Figure 35: Time-evolution of the mixing layer widths h(t) and W (t), the production fractions
Pt and Pm, mixing fractions θ and ξ, and volume-averaged velocities 〈u〉xy, 〈v〉xy and pressure
〈p〉xy for reflecting and outflow boundary conditions.
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The behavior of the density variance Eρ′ρ′(t) is unusual. Note that Eρ′ρ′(t) correspond-
ing to the outflow boundary condition is greater than Eρ′ρ′(t) corresponding to the reflecting
boundary condition, indicating that the reflected rarefaction wave decreases the density fluc-
tuations.

The pressure variance Ep′p′(t) indicates that the pressure fluctuations are nearly constant
in the absence of reflected waves. By contrast, the fluctuations corresponding to the reflecting
boundary condition undergo a sudden transient increase following the interaction with reflected
waves, and approach the nearly constant value corresponding to the outflow boundary condition
shortly thereafter.



E(t) Eω′′ω′′(t)

5 10 15

104

105

106

t (ms)

E Reflecting BC
u−comp Reflecting BC
v−comp Reflecting BC
E Outflow BC
u−comp Outflow BC
v−comp Outflow BC

5 10 15

105

106

107

t (ms)

Reflecting BC
Outflow BC

Eρ′ρ′(t) Ep′p′(t)

5 10 15
10−6

10−5

10−4

t (ms)

Reflecting BC
Outflow BC

5 10 15

106

108

1010

t (ms)

Reflecting BC
Outflow BC

Figure 36: Time-evolution of the fluctuating kinetic energy E(t) and its components, the
fluctuating enstrophy Eω′′ω′′(t), density variance Eρ′ρ′(t), and pressure variance Ep′p′(t) for
outflow and reflecting boundary conditions.



5 The effects of spatial resolution and order of spatial recon-
struction on mixing

The effects of the spatial (grid) resolution and order of spatial reconstruction on the mixing
quantities are self-consistently and quantitatively investigated in this section. Third-, fifth-,
and ninth-order reconstructions are considered, together with grid resolutions of 128, 256, and
512 points per initial perturbation wavelength λ. The objective of this study is to determine
the sensitivity of mixing quantities to the order of reconstruction (formal, or design, order of
accuracy in sufficiently smooth flow regions) and to the spatial resolution. Most simulation
studies involving the solution of the Euler equations have focused on the numerical ‘conver-
gence’ of some small set of quantities (or a quantity) (e.g., perturbation amplitude or mixing
layer width in Rayleigh-Taylor [97, 37, 26] and Richtmyer-Meshkov instability [42, 41, 22])
over a limited range of time with respect to increasing spatial resolution. The comparison of
quantities obtained using different orders of reconstruction and grid resolution in the present
work is conducted in the spirit of the investigation of Shi, Zhang and Shu [93], who considered
two-dimensional double Mach reflection and Rayleigh-Taylor instability using the fifth- and
ninth-order WENO method. Their investigation emphasized the computational advantage of
higher-order WENO schemes over lower-order WENO schemes for complex flows mainly using
qualitative (visual) comparisons. The present investigation is both quantitative and qualitative,
and examines to what extent different orders of WENO reconstruction and different spatial
resolutions capture specific physical quantities characterizing Richtmyer-Meshkov instability-
induced mixing. The investigation is applied to all of the quantities considered in the previous
section, including mole fractions, mixing fraction, energy spectra, and statistics. To our knowl-
edge, this is the first systematic investigation of profiles, spectra, and statistics as a function of
both spatial resolution and order of reconstruction in the case of the Richtmyer-Meshkov insta-
bility. The HOPE code is ideal for such an investigation, as it is possible to perform numerical
simulations identical in every other respect except the order of reconstruction: this allows a
self-consistent study that is distinct from utilizing different numerical methods with different
formal orders of accuracy (see [24] where the results from a high-order Godunov method and a
compact finite-difference method applied to the Richtmyer-Meshkov instability are compared).

The following conventions are adopted in the presentation of the results in this section.
Quantities obtained using third-, fifth-, and ninth-order WENO reconstruction are shown in
green, red, and dark blue, respectively; different line styles are used to present results with
varying grid resolution. The simulations obtained with an initial resolution of 512, 256, and
128 points per initial perturbation wavelength are denoted as fine, medium, and coarse grid,
respectively, and are presented using a solid line, dashed line, and dash-dot line, respectively.
The results presented in § 4 were obtained using the medium resolution grid and fifth-order
reconstruction: this choice was based on the fact that the fifth-order WENO method has been
used for other investigations by a large number of investigators, while the ninth-order WENO
method is relatively new [9].

This section is organized as follows. First, details of the numerical simulations are presented
in § 5.1. The results for the mixing layer width are presented in § 5.2, followed by the results
for the time-evolution of local mixing quantities and mixing fractions in § 5.3 and § 5.4,
respectively. The results for spectra and statistics are presented in § 5.5 and § 5.6, respectively.
Finally, the time-evolution of the density and vorticity is shown at intervals of 1 ms in § 5.7
to provide qualitative comparisons.
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Fine Grid Medium Grid Coarse Grid
N per λ 512 256 128
∆x (cm) 0.01159 0.02318 0.04636
Ny 1536 768 384

Ly (cm) [0, 17.8] [−0.00579, 17.79621] [−0.01739, 17.78462]
Nx (initial) 801 401 201

Lx (cm) (initial) [0, 9.271875] [−0.00579, 9.26608] [−0.01739, 9.25449]

Table 2: The initial grid resolutions used in the numerical simulations. The choice of starting
and ending points ensures that all of the grids are aligned with one another.

5.1 Grid resolutions and orders of reconstruction

Numerical simulations were performed using uniform grid resolutions with ∆x = ∆y. The
grids were chosen so that points of the medium grid corresponded with every other point of
the fine grid. Similarly, the coarse grid was chosen so that its points would correspond to every
other point of the medium grid and with every four points of the fine grid.

To define the grids, first chose the grid spacings

∆x = ∆y (200)

=
λ

N
,

rounding to a rational number divisible by four, yielding (∆x)fine = 0.01158984375 cm slightly
larger than the theoretical value ∆x = λ/512 = 0.01158854167 cm. This choice corresponds
to 768 points in the domain with Ly = 8.9 cm. Similarly, (∆x)medium = 0.0231796875 cm with
N = 384, and (∆x)coarse = 0.046359375 cm with N = 192. To align the grids, the starting
and ending points of the computational domain were adjusted to account for the distribution
of points by the numerical method. In the y-direction, the first and second grid points are at
locations y1 = −∆x/2 and y2 = ∆x/2. For this reason, if the starting location is chosen to be
at y = 0 for all grids, then the grids would not be aligned. Thus, choose y = 0 for the fine
grid, corresponding to the first two grid points at y1 = − (∆x)fine /2 and y2 = (∆x)fine /2.
For the medium grid, shift by (∆x)fine /2 to the left so that the position of the first two points
are at y1 = −3 (∆x)fine /2 and y2 = (∆x)fine /2. For the coarse grid, shift by 3 (∆x)fine /2,
yielding y1 = −5 (∆x)fine /2 and y2 = (∆x)fine /2. In all three cases, the points at y2 coincide.
A similar procedure is followed for the x-direction. The actual values for the number of grid
points in the y-direction and for the length of the domain Ly used in the simulations were
double the values described above, as the symmetry option in the HOPE code was activated (see
[57]). The grid resolutions are summarized in Table 2.

5.2 The effect on the mixing layer width

Shown in Fig. 37 is a comparison of the dependence of the mixing layer width on the grid
resolution and on the order of the WENO reconstruction up to t = 18 ms. Also shown in
Fig. 37 is the ratio of the widths with respect to the width measured for the ninth-order
simulation on the fine grid. Prior to reshock, the mixing layer width is weakly-dependent
on the resolution and on the order of reconstruction with all simulations giving very similar
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results. This is due to the fact that the flow is dominated by a single, large-scale evolving bubble
(or spike), the front of which is not significantly affected by dissipation. However, following
reshock, the dependence on both order and resolution becomes significant. In particular,
decreasing the order of the WENO reconstruction, as well as decreasing the grid resolution,
result in smaller mixing layer widths and vice versa. Note that the differences are further
amplified by the arrival of the reflected rarefaction wave at t ≈ 10 ms and later further
increase. These differences can be understood as follows. Lower order of reconstruction and
coarser grids correspond to higher values of numerical diffusion. Increased numerical diffusion
damps the velocity fluctuations and in particular, the streamwise fluctuations associated with
the growth of the mixing layer. Therefore, increased numerical diffusion yields smaller mixing
layer widths. In addition, the formation of small-scale structures is also inhibited resulting
in smaller baroclinic circulation deposition during a wave/interface interaction compared to a
high-resolution, high-order simulation exhibiting small-scale structures. As a result, the mixing
layer width is further decreased. This mechanism is clearly seen in § 5.7 where a comparison
of the flow features before and after reshock is presented.

Consider the flow evolution following reshock but prior to the arrival of the reflected rar-
efaction wave in the time interval t ∈ [6.5, 10.5] ms. The mixing layer widths become closer as
the grid resolution doubles and the order of reconstruction increases. At late times, the am-
plitudes from the third-order simulations differ by ≈ 5 cm as the grid is refined. By contrast
the amplitudes obtained from the fifth- and ninth-order simulations differ by ≈ 1 cm as the
grid is refined. The plot of the ratio of the widths show evidence of ‘convergence’ as the value
approaches unity for the ninth order simulations.

5.3 The effect on mixing profiles

An analysis of the effects of grid refinement and order of reconstruction on quantities repre-
sentative of local mixing are presented in this section. The comparisons are conducted at time
t = 6 ms immediately before reshock, at t = 7 ms immediately after reshock, at t = 12 ms late
after reshock, and at t = 18 ms at very late time following reshock as in § 4.5.

Figure 38 shows comparisons of the mole fraction profile 〈X〉 at the selected times. At
t = 6 ms, there is generally good agreement once the order and resolution are sufficiently high.
The results corresponding to third-order reconstruction at medium resolution are closer to the
results corresponding to fifth-order reconstruction at coarse resolution. Similar behavior is
observed for times immediately following reshock at t = 7 ms, with results in generally good
agreement as the resolution and the order are increased. At t = 12 ms, the results begin
to diverge, indicating that differences between the small-scale features are more pronounced
and are captured by the mole fraction. This behavior is also observed when considering the
late-time behavior at t = 18 ms.

Figure 39 shows comparisons of the product mole fraction profile 〈Xp〉. This quantity is
extremely sensitive to both the order and resolution for all times. Note that the spikes at the
beginning and end (corresponding to the top of the bubble and bottom of the spike) are not
captured equally between the methods, due to the different amounts of numerical dissipation
that result in a larger or smaller well-mixed, diffusion layer. Consider time t = 6 ms before
reshock and note that the larger values closer to the middle of the layer (corresponding to
the roll-ups) appear different between the orders and resolutions, with no apparent agreement.
This is due to the different structure of the roll-ups observed across the different methods, as
shown in § 5.7. As the order is increased and the grid points are doubled, additional spiral
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Figure 37: The effects of grid resolution and order of reconstruction on the mixing layer
width (top). For times prior to reshock, a weak dependence on the resolution and order is
observed. For times following reshock, a stronger dependence is observed, with lower-order
reconstruction and coarser grids resulting in smaller post-reshock widths. This is due to the
increased numerical dissipation associated with lower-order reconstruction and coarser grids.
The ratios of the mixing layer width with respect to the ninth-order simulation on the fine
grid (bottom). Following reshock, the ratios corresponding the ninth-order simulations on the
medium and coarse grids are bounded between ≈ 0.95–1.05 for t > 10 ms, providing evidence
for ‘convergence’. The mixing layer widths obtained from the fifth- and third-order simulations
show no ‘convergence’, even at late times following reshock.
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Figure 38: Comparison of the mole fraction profile 〈X〉 at t = 6, 7, 12, 18 ms when the order
of reconstruction and grid resolution are varied.
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roll-ups appear, causing the product mole fraction to oscillate for high orders of reconstruction.
At t = 7 ms, the product mole fraction obtained with increasing order of reconstruction and
grid resolution exhibits differences across the entire mixing layer: these differences are further
amplified for later times. Note that the results obtained using the third-order WENO method
at coarse resolution are in very poor agreement with all of the other results. Again, this is due
to the very large numerical dissipation present in low-order WENO reconstructions, and the
different structure in the small-scale flow features that is further amplified after interactions
with reflected waves.

Figure 40 shows the product mole fraction profile Xp (〈X〉). At t = 6 ms (before reshock),
the profiles are in close agreement as the resolution and order of reconstruction are increased.
This agreement persists at t = 7 ms immediately after reshock, but the agreement decreases at
later times. The reason for this difference is that Xp (〈X〉) is most sensitive to the small-scale
flow features. The differences in small-scale features are not captured by Xp (〈X〉) until long
after reshock. Therefore, as the order is increased and the resolution is doubled, additional
small-scale features with a different spatial distribution are observed at late times, causing
Xp (〈X〉) to exhibit large variations.

Finally, Figs. 41 and 42 show the molecular mixing fractions θ and ξ. The molecular mixing
fraction θ is very sensitive to the order and resolution at all times. Consider θ at t = 6 ms. No
clear agreement is observed, with the smallest and largest values obtained from the ninth- and
fifth-order simulations on the fine grid, respectively, indicating that θ is highly sensitive to the
numerical parameters. Note that ξ at t = 6 ms shows agreement as the order and resolution
are increased, indicating that ξ is more robust than θ. Similar observations apply at t = 7 ms.
For late times, the mixing fractions are very sensitive to the structure of the flow resulting
from the differences in order and grid resolution. The high-amplitude oscillations in θ and ξ
observed at late times indicate that the structures become more fragmented as the resolution
and order are increased.

5.4 The effect on mixing fractions

The effects of grid refinement and order of reconstruction on the production and mixing frac-
tions are presented in this section.

The top row in Fig. 43 shows the time-evolution of the production fractions Pt(t) and
Pm(t). The same observations noted for 〈Xp〉 and Xp (〈X〉) in Figs. 39 and 40 apply to Pt(t)
and Pm(t). In particular, the large differences observed for 〈Xp〉 at t = 6 ms, particularly in the
regions outside the roll-ups where the difference is due to the width of the diffusion layer, result
in increased values of Pt as the resolution and order of reconstruction are decreased. Diffusion
is also central to understanding the large differences observed after reshock, and to the fact that
the results using third-order reconstruction at low resolutions are very different from the other
results. The plot of Pm shows an interesting trend: before reshock, the values corresponding
to third-order reconstruction at low resolution are the lowest, while after reshock the values
corresponding to ninth-order reconstruction at high resolution are the lowest. Smaller values of
Pm indicate that the two fluids are less mixed, as less product is formed. Prior to reshock, the
third-order results display roll-ups that are less tight when compared to the fifth- and ninth-
order results, resulting in overall decreased product formation. Following reshock, the ninth-
order results have the largest mixing layer width, resulting in less overall product formation.

The bottom row of Fig. 43 shows the mixing fractions Ξ and Θ. As noted earlier, Ξ and
Θ quantify (numerical diffusion-induced) mixing. Although both quantities provide similar
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Figure 39: Comparison of the product mole fraction profile 〈Xp〉 at t = 6, 7, 12, 18 ms when
the order of reconstruction and grid resolution are varied.
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Figure 40: Comparison of the product mole fraction profile Xp(〈X〉) at t = 6, 7, 12, 18 ms when
the order of reconstruction and grid resolution are varied.
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Figure 41: Comparison of the molecular mixing fraction θ at t = 6, 7, 12, 18 ms when the order
of reconstruction and grid resolution are varied.
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Figure 42: Comparison of the molecular mixing fraction ξ at t = 6, 7, 12, 18 ms when the order
of reconstruction and grid resolution are varied.
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Figure 43: Comparison of the mixing fractions Pt, Pm, Ξ, and Θ when the order of reconstruc-
tion and grid resolution are varied.
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physical insight into the mixedness of the fluids, the results obtained when comparing different
orders of reconstruction and different grid resolutions exhibit differences. First consider Ξ. The
ninth-order simulation at the highest resolution yields the lowest value of Ξ until shortly after
reshock when it begins to increase. This is due to the rapid decrease in Pm observed above.
The rapid increase corresponding to third-order reconstruction at coarse resolution is due to
the increase in Pt observed above. The plot indicates that for simulations using the same
order of reconstruction, Ξ decreases as the resolution increases. Now consider Θ, for which the
lowest value is given by the fifth-order reconstruction at fine resolution for times before reshock
and by third-order reconstruction at high resolution following reshock. Furthermore, note that
no clear trend exists when the grid resolution is varied. For third-order reconstruction, Θ
decreases as the grid resolution is increased, while for ninth-order reconstruction no such trend
is observed. These results suggest that global mixing is most sensitive to changes in the grid
resolution and the order of reconstruction. Furthermore, the results also indicate that it is
difficult to predict a priori how a change in resolution or order of reconstruction affects these
mixing quantities.

5.5 The effect on spectra

An analysis of the effects of grid refinement on spectra is presented here. Note that as the
number of grid points increases, the range of scales resolved increases and, therefore, the tails
of the spectra become longer. Also shown are plots of the ratio of each quantity to the value
obtained from the ninth-order simulation on the fine grid (the ratio is shown only to the largest
value of k obtained from the third-order, coarse grid simulation).

Figure 44 shows a comparison of the fluctuating kinetic energy spectrum E(k, t). At all
times considered, differences among all results are apparent across all orders of reconstruction
and grid resolutions. This difference in energy becomes more apparent at late time (t = 18 ms)
when all of the low-wavenumber modes in the spectrum have been damped out. The levels of
energy observed in the fifth-order simulation at fine resolution are similar to the energy observed
in the ninth-order simulation at medium resolution. This is further evidence that doubling
the resolution gives qualitatively similar results as increasing the order of reconstruction. At
intermediate and small scales, the spectra become steeper as the order increases. At late times,
the ninth-order simulation on the finest grid has the lowest energy content in the largest scales
and the most energy content in the intermediate scales. Figure 45 shows the ratio of fluctuating
kinetic energy spectrum from the simulations to the spectrum obtained from the ninth-order
simulation on the fine grid. The figure indicates that large differences exist at t = 6 ms, with
ratios oscillating above and below one. As time progresses, the oscillations damp out and it
becomes clear that the energy content from the ninth-order simulation is the largest. At t = 18
ms and at large wavenumbers, the energy from the third-order simulation on the coarse grid
is larger than the energy in the ninth-order simulations, as indicated by the ratio greater than
unity. This phenomenon is due to aliasing which causes the energy to accumulate at large
wavenumbers as the Nyquist wavenumber (127) is approached [36, 17].

Figure 46 shows a comparison of the fluctuating enstrophy spectrum Eω′′ω′′(k, t), which is
extremely sensitive to both order and resolution at all times. In particular, as the resolution
and the order of reconstruction increase, the fluctuating enstrophy content of both the small
and large scales increases. The fluctuating enstrophy spectrum from the ninth-order fine grid
simulation differs from that corresponding to the third-order coarse grid simulation by an order
of magnitude in the large scales and by several orders of magnitude in the intermediate and
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Figure 44: Comparison of the fluctuating kinetic energy spectrum E(k, t) at t = 6, 7, 12, 18 ms
when the order of reconstruction and grid resolution are varied.
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Figure 45: Ratio of the fluctuating kinetic energy spectrum from the simulations to the spec-
trum from the ninth-order simulation on the fine grid at t = 6, 7, 12, 18 ms when the order of
reconstruction and grid resolution are varied.
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Figure 46: Comparison of the fluctuating enstrophy spectrum Eω′′ω′′(k, t) at t = 6, 7, 12, 18 ms
when the order of reconstruction and grid resolution are varied.
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Figure 47: Ratio of the fluctuating enstrophy spectrum from the simulations to the spectrum
from the ninth-order simulation on the fine grid at t = 6, 7, 12, 18 ms when the order of
reconstruction and grid resolution are varied.
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small scales. The plots in § 5.7 show that the vorticity corresponding to higher resolutions
and higher orders increases in magnitude and is more localized, which is also reflected in the
fluctuating enstrophy spectrum. At t = 18 ms, all of the oscillatory modes have been damped
out and the spectrum begins decaying. The lower order and lower resolution spectra are much
steeper than those at higher order and higher resolution. As the vorticity is constructed from
the difference of two velocity gradients, its high-frequency components are more sensitive to
numerical damping than are primitive fields such as the velocity. This sensitivity is amplified
quadratically as the enstrophy is the square of the vorticity. Figure 47 shows the ratio of
fluctuating enstrophy spectrum from the simulations to the spectrum obtained from the ninth-
order simulation on the fine grid. The ratio is always below unity for all times and for all
simulations, indicating that the fluctuating enstrophy spectrum is very sensitive to the order
of reconstruction and grid resolution.

Figure 48 shows the density variance spectrum Eρ′ρ′(k, t). The density variance spectra
are very similar for small wavenumbers, but decrease steeply and rapidly as the wavenumber
increases due to the numerical dissipation (which smooths out the fluctuations). As the order
is increased or the grid resolution is increased, the numerical dissipation is decreased and the
smoothing effects occur at progressively larger wavenumbers. Therefore, the density variance
spectrum provides a useful measure of the effects of the numerical dissipation on the flow. The
lower order and lower resolution spectra are steeper than those at higher order and higher res-
olution. Note that the density variance spectrum from the ninth-order simulation on the finest
grid apparently exhibits an inertial subrange over slightly more than a decade in wavenumbers
at t = 12 and 18 ms. Figure 49 shows the ratio of the density variance spectrum from the
simulations to the spectrum obtained from the ninth-order simulation on the fine grid. At early
times, large fluctuations exist near unity indicating a non-uniform modal distribution of the
density variance. At later times, as the apparent inertial range develops, the ratio approaches
unity, decreasing rapidly as the cutoff wavenumber is reached.

Finally, Fig. 50 shows the pressure variance spectrum Ep′p′(k, t). As the resolution in-
creases, the pressure variance spectrum exhibits differences even in the low-wavenumber range,
with higher resolutions and higher orders resulting in increased energy. This is due to the fact
that the pressure is obtained from the energy equation with increased amounts of energy de-
posited on the interface as the resolution and order are increased. The steep decline in the
spectrum is also due to the numerical dissipation, which smooths out large-wavenumber fluc-
tuations. The lower order and lower resolution spectra are steeper than those at higher order
and higher resolution. Note that the pressure variance spectrum from the ninth-order simula-
tion on the finest grid apparently exhibits an inertial subrange over approximately a decade in
wavenumbers at t = 12 and 18 ms. Figure 51 shows the ratio of the pressure variance spectrum
from the simulations to the spectrum obtained from the ninth-order simulation on the fine grid.
The figure at t = 6 ms indicates that increased energy is observed for the simulation on the
medium grid at high wavenumbers. In particular, a closer examination of the corresponding
plot in Fig. 50 shows that there is a sudden increase in pressure variance similar to what is
observed from aliasing. This result is unexpected, and it is not clear what mechanism causes
this phenomenon. It is noteworthy that this phenomenon is observed in all of simulations.
In particular, the ninth-order simulation on the fine grid also displays an increase in pressure
variance in the large wavenumbers. However, the increase occurs at larger wavenumbers than
for the ninth-order simulation on the medium grid.

As shown above, the investigation of energy spectra provides quantitative information
regarding both the effects of small-scale flow features present at the time of reshock and the
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Figure 48: Comparison of the density variance spectrum Eρ′ρ′(k, t) at t = 6, 7, 12, 18 ms when
the order of reconstruction and grid resolution are varied.
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Figure 49: Ratio of the density variance spectrum from the simulations to the spectrum from
the ninth-order simulation on the fine grid at t = 6, 7, 12, 18 ms when the order of reconstruction
and grid resolution are varied.
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Figure 50: Comparison of the pressure variance spectrum Ep′p′(k, t) at t = 6, 7, 12, 18 ms when
the order of reconstruction and grid resolution are varied.
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Figure 51: Ratio of the pressure variance spectrum from the simulations to the spectrum from
the ninth-order simulation on the fine grid at t = 6, 7, 12, 18 ms when the order of reconstruction
and grid resolution are varied.
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effects of intrinsic numerical dissipation of an algorithm. The effects of small-scale flow features
and fluctuations are captured by the energy spectra. In particular, the jump in magnitude
across different resolutions and orders of reconstruction is a direct consequence of the presence
of small-scale flow features. The effects of numerical viscosity can be best captured by the
density variance spectrum, in which the steep decline at high-wavenumbers is a direct effect
of numerical dissipation smoothing out small-scale fluctuations. As observed from the ratio
of each spectrum from the simulations with different orders and resolutions to the spectrum
obtained from the ninth-order simulation on the fine grid, there is no apparent ‘convergence’
of the spectra: this indicates that quantities sensitive to the small-scale structure of the flow
do not generally exhibit ‘convergence’ while quantities determined primarily by the large-
scale structures appear to be ‘converged’ at sufficiently high order of reconstruction and grid
resolution, i.e., the mixing layer amplitude or width (as shown in § 5.2).

5.6 The effect on statistics

An investigation of the effects of grid refinement and order of reconstruction on the statistics
(i.e., wavenumber-integrated energy spectra) is presented here.

Figure 52 shows the fluctuating kinetic energy and its components. As the order of recon-
struction and resolution are increased, the overall energy increases before reshock. However,
this is no longer the case following reshock. For example, consider Eu′′u′′(t). The ninth-order
result at coarse resolution has the lowest energy, which can be explained by recalling that the
mixing layer width obtained from the ninth-order simulation is larger than that obtained from
the third-order simulation, resulting in less overall energy. Also note that Ev′′v′′(t) is much
more sensitive to the spatial resolution and to the order of reconstruction than Eu′′u′′(t), both
before and after reshock (particularly at late times). Following reshock, the simulations at
lowest resolution are no longer the simulations with the least energy content: this is again
due to the reduced mixing layer width observed for coarser simulations, which yields increased
levels of energy.

The subtle differences observed for the kinetic energy are no longer apparent when con-
sidering the fluctuating enstrophy Eω′′ω′′(t). Figure 52 shows that the enstrophy increases as
the order and spatial resolution increase. The enstrophy differentiates between the orders of
reconstruction and grid resolutions, and the enstrophies from simulations with increased grid
resolution or higher order of reconstruction are very similar. Just before reshock, as well as
for all times following reshock, the fluctuating enstrophy from the ninth-order fine grid sim-
ulation differs from that obtained from the third-order coarse grid simulation by an order of
magnitude.

The density variance Eρ′ρ′(t) shown in Fig. 52 exhibits agreement once the order and grid
resolution are sufficiently high. This result is consistent with the previous observation that the
density variance spectrum does not significantly change as a function of grid resolution and
order of reconstruction, with the exception of a steep decline at large wavenumbers. Contribu-
tions from the small scales (large wavenumbers) are not weighted heavily in the computations
of statistics, which is consistent with the small changes. The density variance is rapidly damped
in the third-order, coarse and medium grid simulations. The pressure variance Ep′p′(t) shown
in Fig. 52 exhibits little sensitivity to changes in the order of reconstruction and grid resolution.
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Figure 52: Comparison of Eu′′u′′(t), Ev′′v′′(t), E(t), Eω′′ω′′(t), Eρ′ρ′(t), and Ep′p′(t) when the
order of reconstruction and grid resolution are varied.
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5.7 Temporal progression of density and vorticity

Presented here is the evolution of the density and vorticity fields at intervals of 1 ms resulting
from the single-mode, two-dimensional Richtmyer-Meshkov instability with reshock obtained
from WENO simulations with third-, fifth-, and ninth-order of reconstruction and grid reso-
lutions of 128, 256, 512 points per initial perturbation wavelength. The following convention
is adopted in the presentation of the results. The top, middle, and bottom rows show the re-
sults of the ninth-, fifth-, and third-order simulations, respectively. The left, middle, and right
columns display results obtained with increasing spatial resolution. The purpose of this sec-
tion is to qualitatively illustrate how the evolution of the instability changes as the numerical
parameters are varied. The figures also aid in interpreting the results in previous sections.

At early times, the interface is more diffused for the lower order and lower resolution. As
time evolves, a qualitative correspondence in both the density and vorticity occurs between
the simulations on the diagonal, i.e., results obtained using a (2n− 1)-th order method with
n = 2, 3 and N grid points per initial perturbation wavelength are similar to those obtained
using a (2n− 1)-th order method with n = 3, 5 and N/2 grid points per initial perturbation
wavelength, respectively. The higher-order and finer grid results show sharper, smaller-scale
features with well-defined roll-ups (more concentrated vortex cores), as well as thinner diffusion
layers. The vortex cores are larger in the lower order and lower resolution simulations.

The amplitudes from the higher order and higher resolution simulations are slightly larger
than those from the lower order and lower resolution simulations before reshock. After reshock,
the difference in amplitude increases due to the mechanisms described in § 5. The third-order
simulations remain highly diffuse for all grid resolutions, even at late times following reshock.
As shown in the figures with t ≥ 7 ms, the third-order simulations retain significant coherency
and symmetry following reshock. The third-order results are characteristic of simulations with
a high degree of numerical diffusion, as well as simulations that are under-resolved.

By t = 6 ms, the medium grid ninth-order simulation exhibits additional small-scale struc-
ture within the roll-ups. This additional structure has also been reported by several investiga-
tors using the piecewise-parabolic method (PPM) [105, 82], and is apparently a manifestation
of a physical process observed in experiments [44, 78, 23]. By contrast, the fine grid ninth-order
simulation begins to show asymmetrical and fragmented structure within the roll-ups, as well
as on the interface. Such structure was also observed in ninth- and eleventh-order numerical
simulations at high resolutions conducted at Brown University; it is speculated that as the
roll-ups form, the interface separating the two gases is stretched increasingly thinner and the
differences in flow velocities across the interface, along with the numerical perturbations, cause
the formation of an instability similar to Kelvin-Helmholtz instability [27]. It is believed that
this is a manifestation of a numerical instability due to the small numerical diffusion that is
unable to provide sufficient regularization of the Euler equations as the grid Reynolds number
[95, 81]

Re∆x =
cs ∆x
νnum

(201)

increases (where νnum is some parameterization of the numerical viscosity of the method and
cs is the speed of sound). It would be of interest to perform a grid convergence study using
explicit molecular dissipation and diffusion to determine whether this fragmentation persists.
Following reshock the ninth-order simulations exhibit the most small-scale, disordered structure
with significant fragmentation of the density and the vorticity, and are most reminiscent of
the experimental PLIF images in Collins and Jacobs. By contrast, the lower order and lower
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resolution simulations continue to exhibit relatively ordered structure, even following reshock.
This study constitutes the first systematic investigation of the effects of numerical sim-

ulation parameters on the instability evolution. The results were also obtained for a two-
dimensional Eulerian flow. Therefore, the differences in instability evolution depend solely
on the numerical dissipation of the method νnum and not on a physical dissipation or vortex
stretching in three-dimensional simulations. In part four of this report [59] three dimensional
simulations are considered and a systematic investigation of two- and three-dimensional effects
is discussed.
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Figure 53: Density and vorticity at t = 1 ms.
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Figure 54: Density and vorticity at t = 2 ms.
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Figure 55: Density and vorticity at t = 3 ms.
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Figure 56: Density and vorticity at t = 4 ms.
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Figure 57: Density and vorticity at t = 5 ms.
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Figure 58: Density and vorticity at t = 6 ms.
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Figure 59: Density and vorticity at t = 7 ms.
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Figure 60: Density and vorticity at t = 8 ms.
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Figure 61: Density and vorticity at t = 9 ms.
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Figure 62: Density and vorticity at t = 10 ms.
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Figure 63: Density and vorticity at t = 11 ms.
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Figure 64: Density and vorticity at t = 12 ms.
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Figure 65: Density and vorticity at t = 13 ms.
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Figure 66: Density and vorticity at t = 14 ms.
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Figure 67: Density and vorticity at t = 15 ms.
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Figure 68: Density and vorticity at t = 16 ms.
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Figure 69: Density and vorticity at t = 17 ms.
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Figure 70: Density and vorticity at t = 18 ms.
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Order Coarse resolution Medium resolution Fine resolution
9 0.4 2.3 20.7
5 0.2 1.0 9.5
3 0.17 0.8 7.1

Table 3: Ratio of CPU times for advancing the simulations by ∆t = 0.1 ms compared with the
time needed for the fifth-order simulation at medium resolution.

5.8 Computational scaling of the simulations

The simulations presented in this report were conducted on the Blue Pacific supercomputer
at the Lawrence Livermore National Laboratory. For each case, 32 nodes were used with a
total of 128 processors. Each simulation was carried out to a time of at least t = 18 ms. The
CPU times required to advance the simulation between t = 12.5 ms and t = 12.6 ms was
compared with the time required for the fifth-order medium grid simulation. The late times
are chosen because at earlier times the domain increases due to the adaptive domain feature
of the HOPE code [57]. The ratio of the CPU times for the simulations and the time needed
for the fifth-order medium grid case are presented in Table 3. Increasing the order of WENO
reconstruction requires twice the computational time, whereas doubling the grid resolution
requires five to eight times more computational time.

The analysis presented in this report suggests that similar results are observed when either
the order of reconstruction was increased, keeping the grid resolution fixed, or the resolution
was doubled, keeping the order of reconstruction fixed. The CPU times suggest that the use
of high-order methods is less computationally expensive than increasing the grid resolution.
Thus, the use of high order methods can lead to a significant advantage in three-dimensional
simulations of complex hydrodynamic flows.
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6 Summary and conclusions

The high-resolution weighted essentially non-oscillatory (WENO) shock-capturing method im-
plemented in the HOPE code has been applied to investigate the classical two-dimensional,
single-mode Richtmyer-Meshkov instability in planar geometry with reshock. The current sim-
ulations were conducted in the spirit of monotone-integrated large-eddy simulation (MILES),
i.e., molecular dissipation and diffusion terms in the governing equations were neglected. The
initial conditions and computational domain approximate the Mach 1.21 air(acetone)/SF6

shock tube experiment of Collins and Jacobs [23]. Only the test section of the shock tube was
simulated, so that the reflected rarefaction wave present in the experiment was not explicitly
captured in the simulations. A single value of the adiabatic exponent was used, as additional
algorithm development is required for the two-fluid implementation in the HOPE code. Future
simulations with explicit molecular dissipation and with subgrid-scale models are also planned
to more accurately model the flow physics. Simulations with eleventh-order reconstruction are
also envisaged.

The simulations were performed in two spatial dimensions using the Euler equations for
the following reasons:

1. the initial conditions based on the Collins and Jacobs shock tube experiment are effec-
tively two-dimensional, so that a two-dimensional simulation is expected to capture the
essential flow features prior to reshock;

2. it is possible to achieve much higher spatial resolution in two dimensions than in three
dimensions, thereby affording highly-resolved simulations that are less affected by nu-
merical diffusion;

3. two-dimensional simulations allow the study of the breakup of structures and the transfer
of energy to small scales in the absence of the vortex stretching mechanism, and facilitate
comparisons to previous two-dimensional simulations;

4. it is computationally challenging to perform three-dimensional simulations with explicit
molecular dissipation and diffusion that capture all of the spatio-temporal scales present
in a complex flow, particularly following reshock, while sharply capturing the shock.

The complex issues concerning the consequences of the reduction of the accuracy of nu-
merical solutions of nonlinear problems to first-order upon shock passage [65, 18, 19] are not
addressed in the present work. In this sense, the spatial truncation error of a higher-order
method can be parameterized in terms of the grid resolution ∆x by

ε(r,∆x) = c∆x+ cr (∆x)r , (202)

where c and cr are constants dependent upon the flow and on the specific numerical scheme,
and r is the spatial order of accuracy of the scheme (n.b., the error increases with increasing
shock strength). The first term on the right side is the error due to the shock, and the second
term on the right is the error in a smooth flow region. Note that only those regions in the
computational domain where information propagates through a shock are susceptible to such
shock-capturing errors. While these issues are common to all shock-capturing methods (irre-
spective of their formal order of accuracy) when the initial shock passes through a perturbed
interface to generate the Richtmyer-Meshkov instability and when the reshock of the evolving
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interface occurs, it is quite apparent from the present investigation that the properties of the
relatively smooth and nearly-incompressible flow following reshock is strongly affected by the
order of the method. This topic deserves further investigation and analysis.

Numerical simulations were performed using third-, fifth-, and ninth-order spatial flux re-
construction and uniform spatial grid resolutions with 128, 256, and 512 points per initial
perturbation wavelength. To our knowledge, the present work represents the first comprehen-
sive application of the WENO method to the computational study of the classical Richtmyer-
Meshkov instability with reshock. It should be noted that a detailed numerical study of the
single-mode, ‘impulsive Richtmyer-Meshkov’ instability experiment with reshock of Jacobs,
Jones and Niederhaus [46, 78, 79] was performed by Kotelnikov and Zabusky [52] and Kotel-
nikov, Ray and Zabusky [51] using the vortex-in-cell method and the contour advection semi-
Lagrangian method (n.b., Kotelnikov, Ray and Zabusky [51] also simulated the Jacobs et al.
[45] and Rightley et al. [88] Mach 1.2 experiment with reshock using a Godunov method,
and compared the results with their incompressible results). Furthermore, to our knowledge,
the present work is the first systematic investigation of the effects of both order of reconstruc-
tion and grid resolution in a given high-resolution method, as applied to this instability. The
comparison of results obtained with different grid resolutions and reconstructions is similar
in spirit to the work of Cook, Cabot and Greenough [24], in which a centered ENO scheme,
a higher-order Godunov method, and a filtered spectral/compact difference method (applied
to the Shu-Osher problem, Collins-Jacobs experiment prior to reshock, and Taylor-Green vor-
tex) were compared. The comparison of results obtained with fifth- and ninth-order WENO
reconstruction in the present study showed that similar structures can be obtained using the
higher-order reconstruction with one-half of the grid resolution in each direction—a similar
conclusion obtained previously for the Rayleigh-Taylor instability [93]. This result can be ex-
plained using (202) as follows. The error can be decreased by halving ∆x or by doubling r.
Let ε(r,∆x) in Eq. (202) represent the error for a given ∆x and r. Let ∆x′ = ∆x/2 and
r′ = 2r (corresponding to doubling the grid resolution and doubling the order). Doubling the
grid resolution gives

ε(r,∆x′) = c∆x′ + cr
(
∆x′

)r (203)

= c
∆x
2

+ cr (∆x)r
(

1
2

)r
,

while doubling the order of spatial reconstruction gives

ε(r′,∆x) = c∆x+ cr′ (∆x)
r′ (204)

= c∆x+ cr′ (∆x)
r (∆x)r .

If cr′ ∼ cr then, comparing the truncation errors in Eqs. (203) and (204) reveals that doubling
the order of reconstruction yields an overall smaller truncation error in the smooth region of
the flow as ∆x < 1/2. Since much of the instability evolution occurs in regions far away from
the shock, this explains why doubling the order of reconstruction gives comparable results to
doubling the grid resolution. Note that near the shock, doubling the grid resolution results
in a smaller error than doubling the order of reconstruction. This reflects the trade-off be-
tween the formal design order of a scheme and spatial resolution, which becomes even more
computationally significant in three spatial dimensions.

While the numerical simulations presented here have several limitations (including the con-
sideration of only the shock tube test section, and two-dimensional flow), the excellent agree-
ment with experimental data prior to reshock provides encouragement for the continued use of
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the WENO method for the quantitative investigation of complex hydrodynamic flows induced
by shocks. In particular, Part 3 [58] and Part 4 [59] of this report will consider the oblique
single-mode Richtmyer-Meshkov instability in two dimensions and the multi-mode Richtmyer-
Meshkov instability with reshock in two and three dimensions, respectively. Presented below
is a summary of the key findings in each of the three principal subjects of investigation.

6.1 Mixing layer growth

A comprehensive analysis of the instability evolution was presented in the first part of the report
in § 2 and 3, including: (1) a comparison of the density from a fifth- and ninth-order WENO
simulation (using a uniform grid resolution of 256 points per initial perturbation wavelength) to
experimental PLIF images, and; (2) a comparison of the mixing layer growth before and after
reshock with the predictions of analytical, semi-analytical, and phenomenological amplitude
(mixing layer) growth models. The simulations were conducted up to a time t = 18 ms, much
later than reported in the Collins and Jacobs [23] experiment (t = 11 ms).

6.1.1 Comparison to linear and nonlinear models prior to reshock

The amplitude growth prior to reshock was compared to the experimental data and to the
predictions of various classical and recent models for amplitude growth in the linear and
weakly-nonlinear regimes. Excellent quantitative agreement was found between the ampli-
tude obtained from the fifth-order simulation on the medium resolution (256 points per initial
perturbation wavelength) grid and the experimental data points prior to reshock. The density
fields obtained from the simulation were also in excellent qualitative agreement with the cor-
rected density PLIF images from the experiment prior to reshock. As expected, the simulation
data was also in excellent agreement with linear models at early times t satisfying kv0t . 1,
where v0 is given in Eq. (12). The simulation data was also found to be in best agreement
with the predictions of the Zhang-Sohn Padé amplitude growth model. Thus, this component
of the present work serves as further validation of the HOPE code and of the WENO method
against experimental data.

6.1.2 Comparison to reshock models

Following reshock, it was shown that the instability evolution did not agree with the exper-
imental PLIF images, as the rarefaction wave present in the experiment was not captured
in the numerical simulation. As a result, the density fields obtained from the simulation
and the corrected density PLIF images from the experiment showed a time lag of ≈ 1 ms.
Simulated density Schlieren images were also presented to illustrate the complex wave inter-
actions occurring during the reshock process, i.e., the reflected and transmitted waves, and
the focusing effects that are difficult to image experimentally. The growth of the mixing layer
following reshock obtained from the numerical simulation was compared to the predictions
of the Mikaelian [71] and Brouillette-Sturtevant [15] post-reshock amplitude growth models.
The simulation data was found to be in very good agreement with the linear-in-time growth
predicted by the Mikaelian model immediately following reshock. The Brouillette-Sturtevant
model also predicts a linear growth, but with a smaller slope than the Mikaelian model. At
later times following reshock, the simulation data lies between the predictions of the Mikaelian
and Brouillette-Sturtevant models. As also expected, the amplitudes turn over and grow at
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a slower rate at sufficiently large times following reshock. In general, it is clear that addi-
tional experimental data is needed to provide a more complete validation, especially following
reshock.

6.1.3 The effects of outflow and reflecting boundary conditions

The effects of reflecting or outflow boundary conditions at the shock tube end wall (end of the
computational domain) on the amplitude growth and other properties were investigated. In
particular, it was shown that the mixing layer width computed using the reflecting boundary
condition was significantly larger than that computed using the outflow boundary condition
following the arrival of the reflected rarefaction wave at t ≈ 10 ms. The widths differed by
≈ 9 cm at a time 8 ms following the arrival of the reflected rarefaction wave. As the outflow
boundary condition case eliminates wave-interface interactions subsequent to reshock, the flow
transitions to a decaying flow at sufficiently large times after reshock. A quasi-decaying flow
develops at late times in the reflecting boundary condition case, as multiple (successively
weaker) wave-interface interactions occur. To our knowledge, this is the first numerical study
that removed the effects of reflected waves on the evolution after reshock, and showed their
important role on the dynamics of the flow following reshock.

6.2 Local and global mixing analysis

The second part of the report in § 4 considered an extensive investigation of mixing before and
after reshock. Mole fractions, fast kinetic models, and fluctuating energy spectra were used
to characterize the mixing in the direction of propagation of the shock. Mixing fractions and
statistics were also considered to characterize the overall mixing and distribution of energy as
a function of time.

6.2.1 Profiles, mixing fractions, spectra, and statistics

The analysis included an examination of the profiles of mole fractions and other quantities
characterizing the mixing over the extent of the layer as a function of time. Many of these
quantities were adopted from previous analysis of Rayleigh-Taylor mixing, suitably modified for
their application to shocked compressible flow. The profiles were recentered by the location of
the midpoint of the interface and rescaled by the total mixing layer width in order to investigate
the dynamics of mixing within the layer and the apparent collapse of the profiles at late times.
The observed characteristics of the mixing averaged over the direction of shock propagation
were qualitatively explained using the product mole fraction profiles, volume fraction profiles,
and other related quantities.

The time-evolution of the one-dimensional Fourier spectra of the fluctuating kinetic en-
ergy components, enstrophy, density variance, and pressure variance was also studied. It was
shown that the kinetic energy spectrum decays following reshock and at late times during the
quasi-decay phase. The streamwise component of the kinetic energy spectrum dominates the
spanwise component at all times, indicating that spectral isotropy is not achieved. The fluctu-
ating enstrophy spectrum shows significant energy content in the intermediate and small-scales.
The density variance spectrum shows little sensitivity to reshock. By contrast, the pressure
variance is highly sensitive to reshock and to the interactions with the reflected waves. To our
knowledge, this represents the first examination of the fluctuation enstrophy, density variance
and pressure variance spectra in a reshocked Richtmyer-Meshkov mixing layer.
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An apparent inertial range was observed for the density and pressure variance spectra
over approximately a decade in wavenumber at late times following reshock. However, spatial
resolutions with more than 512 points per initial perturbation wavelength are needed to support
a wider range of spatial scales, in order to conclusively determine whether any scaling behavior
of the one-dimensional spectra exists.

The time-evolution of global statistics (i.e., wavenumber-integrated spectra), as well as
of volume-averaged quantities, was also studied. The decay characteristics following reshock
for these quantities were exhibited. The approach to statistical isotropy of the streamwise
and spanwise velocity fluctuations at late times was demonstrated. The fluctuating enstrophy
displays decay at late times following the interaction with the reflected rarefaction wave at
t ≈ 10 ms. The pressure variance showed the most sensitivity to the interaction of reflected
waves with the mixing layer. By contrast, the density variance displayed the least sensitivity.
These observations are consistent with those pertaining to the density and pressure variance
spectra.

6.2.2 The effects of reshock

A detailed examination of the effects of reshock on the behavior of mixing profiles, mixing
fractions, spectra, and statistics was presented. Several measures of enhanced mixing following
reshock were discussed, as well as the amplification of fluctuations reflected in the energy
spectra and statistics. It was shown that reshock imparts energy into all scales of the flow, with
the amplification varying strongly with wavenumber. In general, the largest and intermediate
scales showed the most energy amplification, while the smallest scales showed the least energy
amplification. In the case of the kinetic energy fluctuations, the amplification was a constant
over a wide range of intermediate and large wavenumbers. It was found that different quantities
exhibit different sensitivities following reshock. Pressure fluctuations, as reflected in their
spectra, increase strongly. Thus, quantities depending on pressure fluctuations cannot be
neglected in turbulent transport and mixing models. By contrast, density fluctuations do not
exhibit such strong sensitivity to reshock.

6.2.3 The effects of outflow and reflecting boundary conditions

The effects of outflow and reflecting boundary conditions at the end wall of the shock tube
test section on mixing quantities, spectra and statistics was also considered. Mixing fractions
obtained with the outflow boundary condition were larger than those obtained with the re-
flecting boundary condition, as the molar fractions in the former were computed over a smaller
mixing layer width. By contrast, the statistics obtained with the outflow boundary condition
yielded larger values than those obtained with the reflecting boundary condition, as the in-
teraction with the reflected rarefaction wave in the former further excited the fluctuations.
In addition, statistical isotropy is not achieved with the outflow boundary condition, as the
streamwise and spanwise fluctuating kinetic energy maintain a constant separation in time;
wavenumber-integrated spectra (global statistics) also exhibited differences. This comparison
further supports the important role that reflected waves have in the dynamics of the flow follow-
ing reshock. These results also have important implications for modeling turbulent transport
and mixing induced by the Richtmyer-Meshkov instability with reshock.
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6.3 The effects of order of reconstruction and grid resolution

A comprehensive investigation of the effects of order of reconstruction and grid resolution on the
mixing layer growth, mole fractions, spectra, spatially-averaged mixing fractions, and statistics
was presented in the third part of the report in § 5 and 5.7. Prior to reshock, these quantities
exhibit relatively little sensitivity to the reconstruction order and grid resolution. However,
they exhibited much more sensitivity to these numerical parameters following reshock, includ-
ing in the late-time, quasi-decay phase. Following reshock, the mixing layer width exhibited
increased sensitivity to the order of spatial reconstruction and grid resolution. The growth
rates obtained from the high-order and high-resolution simulations were larger than those ob-
tained from lower order and lower resolution simulations. This is due to the different amounts
of numerical viscosity associated with each such simulation. High-resolution, high-order meth-
ods have smaller amounts of intrinsic numerical diffusion. Large numerical diffusion prevents
the formation of small-scale features that are responsible for increased growth of the mixing
layer following reshock.

The expression (202) suggests that the error of a high-order method vanishes in the limit
∆x ↓ 0. However, in general, there are no theoretical proofs of the convergence of multi-
dimensional numerical solutions obtained using nonlinear methods for general flows described
by the non-dissipative, compressible fluid dynamics equations (i.e., Euler equations) [55].
Hence, there is no guarantee of pointwise convergence of the numerical solution, i.e., grid
refinement and increasing the order of resolution is not necessarily expected to yield pointwise-
converged quantities. However, ‘convergence’ can be observed in large-scale quantities, such
as the mixing layer width. In fact, as the order of reconstruction and the grid is refined, the
mixing layer width prior to reshock also appears to ‘converge’. It is interesting to note that
some ‘convergence’ is also observed for the width following reshock (t ≥ 6 ms), but prior to the
arrival of the reflected rarefaction wave at t ≈ 10 ms. As the grid is refined and the order of
reconstruction is increased, the discrepancies between the widths decrease and the width ob-
tained from the ninth-order simulation on the medium grid is nearly the same as that obtained
from the ninth-order simulation on the fine grid. This ‘convergence’ is no longer apparent after
the arrival of the reflected rarefaction wave, as the difference between the widths increases with
time. The late-time width shows significant variation as the order of reconstruction is increased
and the grid is refined, indicating that parameterizations of apparent power-law growth at late
times using general expressions of the form

h(t) = a+ b (t+ t0)
θ , (205)

where a and b are parameters, and t0 is a virtual time origin [43], must be performed with
caution. An analysis of the spectra from the simulations with different orders and resolutions
compared to the spectrum obtained from the ninth-order simulation on the fine grid showed
that there is no apparent ‘convergence’ of these spectra. This, together with an analysis of mix-
ing fractions and other quantities sensitive to molecular mixing, shows that quantities sensitive
to the small-scale structure of the flow do not generally exhibit ‘convergence’, while quanti-
ties determined primarily by the large-scale structures appear to be ‘converged’ at sufficiently
high order of reconstruction and grid resolution. Hence, large-scale (e.g., amplitude) data is
insufficient to validate numerical simulation results, as quantities sensitive to fluctuations can
differ significantly, while the large-scale structures are insensitive. These issues, and additional
quantities such as probability distributions, other statistics, and turbulent transport quantities,
will be discussed further in Part 4 of this report [59]. Difference norms and other quantitative
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measures of the difference between simulation data of different order and resolution is relegated
to future work.

Statistics and spectra that had significant contributions from intermediate- and small-scale
structures exhibited the most sensitivity as the order of reconstruction was increased and
the grid was refined. The third-order simulations exhibited very large numerical diffusion,
even at the highest resolution of 512 points per initial perturbation wavelength. This results
in the preservation of large-scale structures as the fluctuations associated with small-scale
structures are strongly damped. As a result, well-defined, nearly-symmetrical, large-scale
structures persisted to late times following reshock. This is reflected in the mole fractions,
mixing fractions, spectra, and statistics from the third-order simulations, differing significantly
from the results from the higher order simulations. Thus, the use of data from third-order
WENO simulations at these spatial resolutions to quantify mixing is not well-justified. By
contrast, simulations with increasing order of spatial reconstruction and increasing spatial
resolution exhibited the development of asymmetry and fragmentation of large structures at
late times following reshock, resulting in increased mixing. This is reflected in the mole fractions
that exhibit strongly-oscillatory behavior at late times.

The variation of the order of reconstruction and grid resolution in the present study investi-
gated only the spatial discretization error in the method. It would be of interest to investigate
the error in the temporal discretization by comparing the present results obtained using the
third-order TVD Runge-Kutta scheme to those obtained using a second- and fourth-order
time-evolution scheme, to investigate the nature of the cumulative errors.

6.4 Conclusions

Very little experimental data is available after reshock to aid in validating and constraining
numerical simulation data. The present simulations provide pointwise data that can be used
to compute profiles across the mixing layer, measures of mixing, spectra, and statistics. Thus,
this work is representative of an effort to use a validated numerical method to obtain detailed
data not available from experiments. For example, there are currently no experimental mea-
surements of molecular mixing or data concerning the structure of the mixing layer. Also,
energy spectra have not been obtained from experimental data. Experimental data accurately
measuring quantities depending on spatial derivatives or quantities sensitive to small-scale
mixing (e.g., mixing fractions) would be very helpful in discriminating between the different
simulation results obtained across a range of orders and resolutions.

The quantities investigated in this report are not exhaustive. Additional quantities will
be considered in Part 4 of this report [59], including probability distribution functions and
turbulent transport quantities. Detailed data from such simulations can be used to investigate
turbulence model initialization, as well as the properties and predictions of turbulent transport
and mixing models following reshock and late in time.
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